The diagonalizable matrices are not dense in the square real matrices
$begingroup$
Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?
general-topology matrices diagonalization
$endgroup$
|
show 3 more comments
$begingroup$
Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?
general-topology matrices diagonalization
$endgroup$
$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46
$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00
$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03
$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13
1
$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41
|
show 3 more comments
$begingroup$
Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?
general-topology matrices diagonalization
$endgroup$
Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?
general-topology matrices diagonalization
general-topology matrices diagonalization
asked Mar 13 '17 at 8:41
mathcounterexamples.netmathcounterexamples.net
26.9k22158
26.9k22158
$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46
$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00
$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03
$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13
1
$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41
|
show 3 more comments
$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46
$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00
$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03
$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13
1
$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41
$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46
$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46
$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00
$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00
$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03
$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03
$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13
$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13
1
1
$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41
$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41
|
show 3 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Consider the matrix :
$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$
which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.
Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.
For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.
This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.
$endgroup$
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2184461%2fthe-diagonalizable-matrices-are-not-dense-in-the-square-real-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the matrix :
$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$
which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.
Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.
For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.
This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.
$endgroup$
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
add a comment |
$begingroup$
Consider the matrix :
$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$
which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.
Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.
For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.
This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.
$endgroup$
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
add a comment |
$begingroup$
Consider the matrix :
$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$
which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.
Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.
For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.
This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.
$endgroup$
Consider the matrix :
$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$
which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.
Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.
For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.
This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.
answered Mar 13 '17 at 9:03
AdrenAdren
5,413519
5,413519
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
add a comment |
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2184461%2fthe-diagonalizable-matrices-are-not-dense-in-the-square-real-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46
$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00
$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03
$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13
1
$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41