Closed form of an improper integral to solve the period of a dynamical system












14












$begingroup$


This improper integral comes from a problem of periodic orbit. The integral evaluates one half of the period.



In a special case, the integral is
$$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
where
$$Phi(u,v)=frac{uexp{(-u)}}{vexp{(-v)}}$$



The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



I have found a solution to a special case (by applying perturbation method to the original ODE), which is
$$lim_{r_1rightarrow r_2} I =pi$$
When $r_1 rightarrow r_2$, we have $r_1, r_2 rightarrow r_0$, where $r_0$ is the peak position of $g(r)=rexp{(-r)}$.



The numerical verification is shown below:
The interval of integral



$uparrow$ The interval of the integral and the integrand



integral as a function of r2



$uparrow$ The integral as a function of $r_2$



My problem is to derive a closed form for $I(r_1)$, or even just a Taylor expansion about $r_0$. I appreciate any hint.



Thanks!





If you are interested, here is the general form of the integral:
$$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
where
$$Phi(u,v)=frac{uexp{(k(u))}}{vexp{(k(v))}}$$
and $k$ is a decreasing function.
The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



By solving the original ODE using perturbation method, the solution to a special case is
$$lim_{r_1rightarrow r_2} I =frac{pi}{sqrt{1+r_0 k''(r_0)/k'(r_0)}}$$



When $k(r)=-r$, it reduces to $pi$.



In fact, $lim_{r_1 rightarrow r_2} I (k(r)=-Ccdot r^n) = pi/sqrt{n}$.





Thanks to Fabian, the second derivative at $r=1$ matches $I=pi-frac{pi}{12}epsilon^2+O(epsilon^3)$:
secondOrder



$uparrow$ The above is the numerical second order derivative of figure 2.










share|cite|improve this question











$endgroup$

















    14












    $begingroup$


    This improper integral comes from a problem of periodic orbit. The integral evaluates one half of the period.



    In a special case, the integral is
    $$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
    where
    $$Phi(u,v)=frac{uexp{(-u)}}{vexp{(-v)}}$$



    The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



    I have found a solution to a special case (by applying perturbation method to the original ODE), which is
    $$lim_{r_1rightarrow r_2} I =pi$$
    When $r_1 rightarrow r_2$, we have $r_1, r_2 rightarrow r_0$, where $r_0$ is the peak position of $g(r)=rexp{(-r)}$.



    The numerical verification is shown below:
    The interval of integral



    $uparrow$ The interval of the integral and the integrand



    integral as a function of r2



    $uparrow$ The integral as a function of $r_2$



    My problem is to derive a closed form for $I(r_1)$, or even just a Taylor expansion about $r_0$. I appreciate any hint.



    Thanks!





    If you are interested, here is the general form of the integral:
    $$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
    where
    $$Phi(u,v)=frac{uexp{(k(u))}}{vexp{(k(v))}}$$
    and $k$ is a decreasing function.
    The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



    By solving the original ODE using perturbation method, the solution to a special case is
    $$lim_{r_1rightarrow r_2} I =frac{pi}{sqrt{1+r_0 k''(r_0)/k'(r_0)}}$$



    When $k(r)=-r$, it reduces to $pi$.



    In fact, $lim_{r_1 rightarrow r_2} I (k(r)=-Ccdot r^n) = pi/sqrt{n}$.





    Thanks to Fabian, the second derivative at $r=1$ matches $I=pi-frac{pi}{12}epsilon^2+O(epsilon^3)$:
    secondOrder



    $uparrow$ The above is the numerical second order derivative of figure 2.










    share|cite|improve this question











    $endgroup$















      14












      14








      14


      4



      $begingroup$


      This improper integral comes from a problem of periodic orbit. The integral evaluates one half of the period.



      In a special case, the integral is
      $$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
      where
      $$Phi(u,v)=frac{uexp{(-u)}}{vexp{(-v)}}$$



      The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



      I have found a solution to a special case (by applying perturbation method to the original ODE), which is
      $$lim_{r_1rightarrow r_2} I =pi$$
      When $r_1 rightarrow r_2$, we have $r_1, r_2 rightarrow r_0$, where $r_0$ is the peak position of $g(r)=rexp{(-r)}$.



      The numerical verification is shown below:
      The interval of integral



      $uparrow$ The interval of the integral and the integrand



      integral as a function of r2



      $uparrow$ The integral as a function of $r_2$



      My problem is to derive a closed form for $I(r_1)$, or even just a Taylor expansion about $r_0$. I appreciate any hint.



      Thanks!





      If you are interested, here is the general form of the integral:
      $$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
      where
      $$Phi(u,v)=frac{uexp{(k(u))}}{vexp{(k(v))}}$$
      and $k$ is a decreasing function.
      The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



      By solving the original ODE using perturbation method, the solution to a special case is
      $$lim_{r_1rightarrow r_2} I =frac{pi}{sqrt{1+r_0 k''(r_0)/k'(r_0)}}$$



      When $k(r)=-r$, it reduces to $pi$.



      In fact, $lim_{r_1 rightarrow r_2} I (k(r)=-Ccdot r^n) = pi/sqrt{n}$.





      Thanks to Fabian, the second derivative at $r=1$ matches $I=pi-frac{pi}{12}epsilon^2+O(epsilon^3)$:
      secondOrder



      $uparrow$ The above is the numerical second order derivative of figure 2.










      share|cite|improve this question











      $endgroup$




      This improper integral comes from a problem of periodic orbit. The integral evaluates one half of the period.



      In a special case, the integral is
      $$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
      where
      $$Phi(u,v)=frac{uexp{(-u)}}{vexp{(-v)}}$$



      The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



      I have found a solution to a special case (by applying perturbation method to the original ODE), which is
      $$lim_{r_1rightarrow r_2} I =pi$$
      When $r_1 rightarrow r_2$, we have $r_1, r_2 rightarrow r_0$, where $r_0$ is the peak position of $g(r)=rexp{(-r)}$.



      The numerical verification is shown below:
      The interval of integral



      $uparrow$ The interval of the integral and the integrand



      integral as a function of r2



      $uparrow$ The integral as a function of $r_2$



      My problem is to derive a closed form for $I(r_1)$, or even just a Taylor expansion about $r_0$. I appreciate any hint.



      Thanks!





      If you are interested, here is the general form of the integral:
      $$I=int_{r_1}^{r_2}frac{dr}{rsqrt{Phi^2(r,r_1)-1}}$$
      where
      $$Phi(u,v)=frac{uexp{(k(u))}}{vexp{(k(v))}}$$
      and $k$ is a decreasing function.
      The interval follows $Phi(r_1,r_2)=1$, $r_1<r_2$.



      By solving the original ODE using perturbation method, the solution to a special case is
      $$lim_{r_1rightarrow r_2} I =frac{pi}{sqrt{1+r_0 k''(r_0)/k'(r_0)}}$$



      When $k(r)=-r$, it reduces to $pi$.



      In fact, $lim_{r_1 rightarrow r_2} I (k(r)=-Ccdot r^n) = pi/sqrt{n}$.





      Thanks to Fabian, the second derivative at $r=1$ matches $I=pi-frac{pi}{12}epsilon^2+O(epsilon^3)$:
      secondOrder



      $uparrow$ The above is the numerical second order derivative of figure 2.







      integration improper-integrals special-functions lambert-w elliptic-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 23 '18 at 4:46







      Shengkai Li

















      asked Dec 13 '18 at 22:32









      Shengkai LiShengkai Li

      17310




      17310






















          2 Answers
          2






          active

          oldest

          votes


















          2





          +50







          $begingroup$

          I do not know how to obtain an explicit solution to the problem. However, it is possible to have a Taylor series of the integral $I(r_1)$ around $r_1=1$.



          Let us first perform the substitution
          $$ r= r_1 (1-x) + r_2 x$$
          such that the boundaries of the integral do not depend on $r_1$. In particular, we obtain the expression
          $$ I(r_1) =int_0^1 frac{r_2 -r_1}{(r_1 (1-x) + r_2 x) [Phi(r_1 (1-x) + r_2 x,r_1)^2 -1 ]^{1/2}},dx,.$$



          Next, we need a relation between $r_2$ and $r_1$. If you look at the function $rexp(-r)$ you see that it is monotonous on the interval $rin[0,1]$ and $rin[1,infty]$. The inverse of this function is commonly called the Lambert W function. In particular, the inverse of the respective branches are denoted by
          $$ r=- W(-x) in [0,1], qquad r=-W_{-1}(-x) in [1,infty],.$$ With this notation, we have
          $$ r_2 =-W_{-1}(-r_1e^{-r_1}), quad r_1 =-W(-r_2e^{-r_2}),.$$



          For $r_1$ close to $1$, we need the expansion of $W$ close to the branch point (see 􏰉􏰐􏰅􏰁􏰉􏰐􏰅􏰁(4.26) of this paper). We obtain
          $$ r_2 = 1+ epsilon + frac{2}{3} epsilon^2 + frac{4}{9} epsilon^3 + frac{44}{135}epsilon^4 + O(epsilon^5) tag{1}$$
          with $epsilon = 1-r_1$.



          Investigating first the point $r_1=r_2=1$. We set $r_1 = 1-epsilon$, $r_2 = 1+epsilon$ (we know from (1) that $r_1$ and $r_2$ approach 1 from below and above at equal rate). To zeroth order in $epsilon$, we obtain
          $$ I(1) =int_0^1 frac{1}{sqrt{x(1-x)}},dx = pi ,$$
          as you have already observed.



          In a next step, we look at $I(1) -I(r_1)$ for $r_1$ close to $1$. Using (1), we expand to third order in $epsilon$. We obtain
          $$I(1)- I(r_1) = int_0^1left[frac{left(-30 x^2+34 x-5right) epsilon ^2}{9 sqrt{(1-x) x}}+frac{2 left(472
          x^3-858 x^2+422 x-33right) epsilon ^3}{135 sqrt{(1-x) x}}+frac{2 (2 x-1) epsilon
          }{3 sqrt{(1-x) x}}right]dx= frac{pi}{12} epsilon^2 + frac{pi}{18} epsilon^3+O(epsilon^4),.$$



          To obtain a higher order approximation, we need more terms in (1). In particular, we have
          $$ r_2 = 1+epsilon +frac{2 epsilon ^2}{3}+frac{4 epsilon ^3}{9}+frac{44 epsilon
          ^4}{135}+frac{104 epsilon ^5}{405}+frac{40 epsilon ^6}{189}+frac{7648 epsilon
          ^7}{42525}+frac{2848 epsilon ^8}{18225}+frac{31712 epsilon
          ^9}{229635}+frac{23429344 epsilon ^{10}}{189448875} +O(epsilon^{11}),.$$



          Now, the expansion of the integral in $epsilon$ yields
          $$ I(r_1) = pi -frac{pi epsilon ^2}{12}-frac{pi epsilon ^3}{18}-frac{23 pi epsilon
          ^4}{576}-frac{67 pi epsilon ^5}{2160}-frac{7613 pi epsilon
          ^6}{311040}-frac{21419 pi epsilon ^7}{1088640}-frac{320153 pi epsilon
          ^8}{19906560}-frac{31342051 pi epsilon ^9}{2351462400} + O(epsilon^{10}),.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:49










          • $begingroup$
            All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
            $endgroup$
            – Yuri Negometyanov
            Dec 23 '18 at 8:27



















          3












          $begingroup$

          Firstly, the integral
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}tag1$$
          exists iff $r_2le 1,$ because the function $dfrac1r e^r$ has minimum at $r=1.$



          Taking in account that
          $$mathrm dleft(dfrac{e^r}rright)=left(dfrac1r - dfrac1{r^2}right)e^r,mathrm dr,$$
          one can get
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - intlimits_{r_1}^{r_2}dfrac1{sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}dleft(dfrac {e^r}rright),mathrm dr$$
          $$=intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - mathrm{arcsin}left(dfrac {r_1}{r}e^{r-r_1}right)Big|_{r_1}^{r_2}= I_1 + mathrm{arccos}left(dfrac{r_1}{r_2}e^{r_2-r_1}right),tag1$$
          where
          $$I_1 = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}.tag2$$
          Note that $I_1 le I,$ because $r_2 le1.$



          I cannot obtain the closed form for $(2).$



          On the other hand, using Taylor series at $x=1$ in the form of
          $$dfrac {e^x} {xsqrt{dfrac{e^{2a}}{a^2}-dfrac{e^{2x}}{x^2}}}
          = dfrac e{sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          - dfrac{e^{2a+1}(x-1)^2}{2left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{e^{2a+1}(x-1)^3}{3left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}$$

          $$ + dfrac{3e^{4a+1}(x-1)^4}{8left(e^{2a}-e^2 a^2right)^2 sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{left(-4e^{2a+3}a^2-11e^{4a+1}right)(x-1)^5}{30left(e^{2a}-e^2a^2right)^2sqrt{dfrac{e^{2a}}{a^2}-e^2}} + dots$$

          (see also Wolfram Alpha), one can get the estimation



          $$I_1 = dfrac1{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}
          int_{r_1}^{r_2}Bigg(1
          - dfrac{e^{2r_1}(r-1)^2}{2left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1}(r-1)^3}{3left(e^2 r_1^2-e^{2r_1}right)}$$

          $$ + dfrac{3e^{4r_1}(r-1)^4}{8left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1}right)(r-1)^5}{30left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg),mathrm dr,$$



          $$I_1 = dfrac {1}{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}Bigg((r_2-r_1)
          - dfrac{e^{2r_1}left((r_2-1)^3-(r_1-1)^3right)}{6left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1+1}left((r_2-1)^4-(r_1-1)^4right)}{12left(e^2 r_1^2-e^{2r_1}right) }$$

          $$ + dfrac{3e^{4r_1+1}left((r_2-1)^5-(r_1-1)^5right)}{40left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1+1}right)left((r_2-1)^6-(r_1-1)^6right)}{180left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg)$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, Yuri. I appreciate your time on this problem!
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:51












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038661%2fclosed-form-of-an-improper-integral-to-solve-the-period-of-a-dynamical-system%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2





          +50







          $begingroup$

          I do not know how to obtain an explicit solution to the problem. However, it is possible to have a Taylor series of the integral $I(r_1)$ around $r_1=1$.



          Let us first perform the substitution
          $$ r= r_1 (1-x) + r_2 x$$
          such that the boundaries of the integral do not depend on $r_1$. In particular, we obtain the expression
          $$ I(r_1) =int_0^1 frac{r_2 -r_1}{(r_1 (1-x) + r_2 x) [Phi(r_1 (1-x) + r_2 x,r_1)^2 -1 ]^{1/2}},dx,.$$



          Next, we need a relation between $r_2$ and $r_1$. If you look at the function $rexp(-r)$ you see that it is monotonous on the interval $rin[0,1]$ and $rin[1,infty]$. The inverse of this function is commonly called the Lambert W function. In particular, the inverse of the respective branches are denoted by
          $$ r=- W(-x) in [0,1], qquad r=-W_{-1}(-x) in [1,infty],.$$ With this notation, we have
          $$ r_2 =-W_{-1}(-r_1e^{-r_1}), quad r_1 =-W(-r_2e^{-r_2}),.$$



          For $r_1$ close to $1$, we need the expansion of $W$ close to the branch point (see 􏰉􏰐􏰅􏰁􏰉􏰐􏰅􏰁(4.26) of this paper). We obtain
          $$ r_2 = 1+ epsilon + frac{2}{3} epsilon^2 + frac{4}{9} epsilon^3 + frac{44}{135}epsilon^4 + O(epsilon^5) tag{1}$$
          with $epsilon = 1-r_1$.



          Investigating first the point $r_1=r_2=1$. We set $r_1 = 1-epsilon$, $r_2 = 1+epsilon$ (we know from (1) that $r_1$ and $r_2$ approach 1 from below and above at equal rate). To zeroth order in $epsilon$, we obtain
          $$ I(1) =int_0^1 frac{1}{sqrt{x(1-x)}},dx = pi ,$$
          as you have already observed.



          In a next step, we look at $I(1) -I(r_1)$ for $r_1$ close to $1$. Using (1), we expand to third order in $epsilon$. We obtain
          $$I(1)- I(r_1) = int_0^1left[frac{left(-30 x^2+34 x-5right) epsilon ^2}{9 sqrt{(1-x) x}}+frac{2 left(472
          x^3-858 x^2+422 x-33right) epsilon ^3}{135 sqrt{(1-x) x}}+frac{2 (2 x-1) epsilon
          }{3 sqrt{(1-x) x}}right]dx= frac{pi}{12} epsilon^2 + frac{pi}{18} epsilon^3+O(epsilon^4),.$$



          To obtain a higher order approximation, we need more terms in (1). In particular, we have
          $$ r_2 = 1+epsilon +frac{2 epsilon ^2}{3}+frac{4 epsilon ^3}{9}+frac{44 epsilon
          ^4}{135}+frac{104 epsilon ^5}{405}+frac{40 epsilon ^6}{189}+frac{7648 epsilon
          ^7}{42525}+frac{2848 epsilon ^8}{18225}+frac{31712 epsilon
          ^9}{229635}+frac{23429344 epsilon ^{10}}{189448875} +O(epsilon^{11}),.$$



          Now, the expansion of the integral in $epsilon$ yields
          $$ I(r_1) = pi -frac{pi epsilon ^2}{12}-frac{pi epsilon ^3}{18}-frac{23 pi epsilon
          ^4}{576}-frac{67 pi epsilon ^5}{2160}-frac{7613 pi epsilon
          ^6}{311040}-frac{21419 pi epsilon ^7}{1088640}-frac{320153 pi epsilon
          ^8}{19906560}-frac{31342051 pi epsilon ^9}{2351462400} + O(epsilon^{10}),.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:49










          • $begingroup$
            All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
            $endgroup$
            – Yuri Negometyanov
            Dec 23 '18 at 8:27
















          2





          +50







          $begingroup$

          I do not know how to obtain an explicit solution to the problem. However, it is possible to have a Taylor series of the integral $I(r_1)$ around $r_1=1$.



          Let us first perform the substitution
          $$ r= r_1 (1-x) + r_2 x$$
          such that the boundaries of the integral do not depend on $r_1$. In particular, we obtain the expression
          $$ I(r_1) =int_0^1 frac{r_2 -r_1}{(r_1 (1-x) + r_2 x) [Phi(r_1 (1-x) + r_2 x,r_1)^2 -1 ]^{1/2}},dx,.$$



          Next, we need a relation between $r_2$ and $r_1$. If you look at the function $rexp(-r)$ you see that it is monotonous on the interval $rin[0,1]$ and $rin[1,infty]$. The inverse of this function is commonly called the Lambert W function. In particular, the inverse of the respective branches are denoted by
          $$ r=- W(-x) in [0,1], qquad r=-W_{-1}(-x) in [1,infty],.$$ With this notation, we have
          $$ r_2 =-W_{-1}(-r_1e^{-r_1}), quad r_1 =-W(-r_2e^{-r_2}),.$$



          For $r_1$ close to $1$, we need the expansion of $W$ close to the branch point (see 􏰉􏰐􏰅􏰁􏰉􏰐􏰅􏰁(4.26) of this paper). We obtain
          $$ r_2 = 1+ epsilon + frac{2}{3} epsilon^2 + frac{4}{9} epsilon^3 + frac{44}{135}epsilon^4 + O(epsilon^5) tag{1}$$
          with $epsilon = 1-r_1$.



          Investigating first the point $r_1=r_2=1$. We set $r_1 = 1-epsilon$, $r_2 = 1+epsilon$ (we know from (1) that $r_1$ and $r_2$ approach 1 from below and above at equal rate). To zeroth order in $epsilon$, we obtain
          $$ I(1) =int_0^1 frac{1}{sqrt{x(1-x)}},dx = pi ,$$
          as you have already observed.



          In a next step, we look at $I(1) -I(r_1)$ for $r_1$ close to $1$. Using (1), we expand to third order in $epsilon$. We obtain
          $$I(1)- I(r_1) = int_0^1left[frac{left(-30 x^2+34 x-5right) epsilon ^2}{9 sqrt{(1-x) x}}+frac{2 left(472
          x^3-858 x^2+422 x-33right) epsilon ^3}{135 sqrt{(1-x) x}}+frac{2 (2 x-1) epsilon
          }{3 sqrt{(1-x) x}}right]dx= frac{pi}{12} epsilon^2 + frac{pi}{18} epsilon^3+O(epsilon^4),.$$



          To obtain a higher order approximation, we need more terms in (1). In particular, we have
          $$ r_2 = 1+epsilon +frac{2 epsilon ^2}{3}+frac{4 epsilon ^3}{9}+frac{44 epsilon
          ^4}{135}+frac{104 epsilon ^5}{405}+frac{40 epsilon ^6}{189}+frac{7648 epsilon
          ^7}{42525}+frac{2848 epsilon ^8}{18225}+frac{31712 epsilon
          ^9}{229635}+frac{23429344 epsilon ^{10}}{189448875} +O(epsilon^{11}),.$$



          Now, the expansion of the integral in $epsilon$ yields
          $$ I(r_1) = pi -frac{pi epsilon ^2}{12}-frac{pi epsilon ^3}{18}-frac{23 pi epsilon
          ^4}{576}-frac{67 pi epsilon ^5}{2160}-frac{7613 pi epsilon
          ^6}{311040}-frac{21419 pi epsilon ^7}{1088640}-frac{320153 pi epsilon
          ^8}{19906560}-frac{31342051 pi epsilon ^9}{2351462400} + O(epsilon^{10}),.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:49










          • $begingroup$
            All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
            $endgroup$
            – Yuri Negometyanov
            Dec 23 '18 at 8:27














          2





          +50







          2





          +50



          2




          +50



          $begingroup$

          I do not know how to obtain an explicit solution to the problem. However, it is possible to have a Taylor series of the integral $I(r_1)$ around $r_1=1$.



          Let us first perform the substitution
          $$ r= r_1 (1-x) + r_2 x$$
          such that the boundaries of the integral do not depend on $r_1$. In particular, we obtain the expression
          $$ I(r_1) =int_0^1 frac{r_2 -r_1}{(r_1 (1-x) + r_2 x) [Phi(r_1 (1-x) + r_2 x,r_1)^2 -1 ]^{1/2}},dx,.$$



          Next, we need a relation between $r_2$ and $r_1$. If you look at the function $rexp(-r)$ you see that it is monotonous on the interval $rin[0,1]$ and $rin[1,infty]$. The inverse of this function is commonly called the Lambert W function. In particular, the inverse of the respective branches are denoted by
          $$ r=- W(-x) in [0,1], qquad r=-W_{-1}(-x) in [1,infty],.$$ With this notation, we have
          $$ r_2 =-W_{-1}(-r_1e^{-r_1}), quad r_1 =-W(-r_2e^{-r_2}),.$$



          For $r_1$ close to $1$, we need the expansion of $W$ close to the branch point (see 􏰉􏰐􏰅􏰁􏰉􏰐􏰅􏰁(4.26) of this paper). We obtain
          $$ r_2 = 1+ epsilon + frac{2}{3} epsilon^2 + frac{4}{9} epsilon^3 + frac{44}{135}epsilon^4 + O(epsilon^5) tag{1}$$
          with $epsilon = 1-r_1$.



          Investigating first the point $r_1=r_2=1$. We set $r_1 = 1-epsilon$, $r_2 = 1+epsilon$ (we know from (1) that $r_1$ and $r_2$ approach 1 from below and above at equal rate). To zeroth order in $epsilon$, we obtain
          $$ I(1) =int_0^1 frac{1}{sqrt{x(1-x)}},dx = pi ,$$
          as you have already observed.



          In a next step, we look at $I(1) -I(r_1)$ for $r_1$ close to $1$. Using (1), we expand to third order in $epsilon$. We obtain
          $$I(1)- I(r_1) = int_0^1left[frac{left(-30 x^2+34 x-5right) epsilon ^2}{9 sqrt{(1-x) x}}+frac{2 left(472
          x^3-858 x^2+422 x-33right) epsilon ^3}{135 sqrt{(1-x) x}}+frac{2 (2 x-1) epsilon
          }{3 sqrt{(1-x) x}}right]dx= frac{pi}{12} epsilon^2 + frac{pi}{18} epsilon^3+O(epsilon^4),.$$



          To obtain a higher order approximation, we need more terms in (1). In particular, we have
          $$ r_2 = 1+epsilon +frac{2 epsilon ^2}{3}+frac{4 epsilon ^3}{9}+frac{44 epsilon
          ^4}{135}+frac{104 epsilon ^5}{405}+frac{40 epsilon ^6}{189}+frac{7648 epsilon
          ^7}{42525}+frac{2848 epsilon ^8}{18225}+frac{31712 epsilon
          ^9}{229635}+frac{23429344 epsilon ^{10}}{189448875} +O(epsilon^{11}),.$$



          Now, the expansion of the integral in $epsilon$ yields
          $$ I(r_1) = pi -frac{pi epsilon ^2}{12}-frac{pi epsilon ^3}{18}-frac{23 pi epsilon
          ^4}{576}-frac{67 pi epsilon ^5}{2160}-frac{7613 pi epsilon
          ^6}{311040}-frac{21419 pi epsilon ^7}{1088640}-frac{320153 pi epsilon
          ^8}{19906560}-frac{31342051 pi epsilon ^9}{2351462400} + O(epsilon^{10}),.$$






          share|cite|improve this answer











          $endgroup$



          I do not know how to obtain an explicit solution to the problem. However, it is possible to have a Taylor series of the integral $I(r_1)$ around $r_1=1$.



          Let us first perform the substitution
          $$ r= r_1 (1-x) + r_2 x$$
          such that the boundaries of the integral do not depend on $r_1$. In particular, we obtain the expression
          $$ I(r_1) =int_0^1 frac{r_2 -r_1}{(r_1 (1-x) + r_2 x) [Phi(r_1 (1-x) + r_2 x,r_1)^2 -1 ]^{1/2}},dx,.$$



          Next, we need a relation between $r_2$ and $r_1$. If you look at the function $rexp(-r)$ you see that it is monotonous on the interval $rin[0,1]$ and $rin[1,infty]$. The inverse of this function is commonly called the Lambert W function. In particular, the inverse of the respective branches are denoted by
          $$ r=- W(-x) in [0,1], qquad r=-W_{-1}(-x) in [1,infty],.$$ With this notation, we have
          $$ r_2 =-W_{-1}(-r_1e^{-r_1}), quad r_1 =-W(-r_2e^{-r_2}),.$$



          For $r_1$ close to $1$, we need the expansion of $W$ close to the branch point (see 􏰉􏰐􏰅􏰁􏰉􏰐􏰅􏰁(4.26) of this paper). We obtain
          $$ r_2 = 1+ epsilon + frac{2}{3} epsilon^2 + frac{4}{9} epsilon^3 + frac{44}{135}epsilon^4 + O(epsilon^5) tag{1}$$
          with $epsilon = 1-r_1$.



          Investigating first the point $r_1=r_2=1$. We set $r_1 = 1-epsilon$, $r_2 = 1+epsilon$ (we know from (1) that $r_1$ and $r_2$ approach 1 from below and above at equal rate). To zeroth order in $epsilon$, we obtain
          $$ I(1) =int_0^1 frac{1}{sqrt{x(1-x)}},dx = pi ,$$
          as you have already observed.



          In a next step, we look at $I(1) -I(r_1)$ for $r_1$ close to $1$. Using (1), we expand to third order in $epsilon$. We obtain
          $$I(1)- I(r_1) = int_0^1left[frac{left(-30 x^2+34 x-5right) epsilon ^2}{9 sqrt{(1-x) x}}+frac{2 left(472
          x^3-858 x^2+422 x-33right) epsilon ^3}{135 sqrt{(1-x) x}}+frac{2 (2 x-1) epsilon
          }{3 sqrt{(1-x) x}}right]dx= frac{pi}{12} epsilon^2 + frac{pi}{18} epsilon^3+O(epsilon^4),.$$



          To obtain a higher order approximation, we need more terms in (1). In particular, we have
          $$ r_2 = 1+epsilon +frac{2 epsilon ^2}{3}+frac{4 epsilon ^3}{9}+frac{44 epsilon
          ^4}{135}+frac{104 epsilon ^5}{405}+frac{40 epsilon ^6}{189}+frac{7648 epsilon
          ^7}{42525}+frac{2848 epsilon ^8}{18225}+frac{31712 epsilon
          ^9}{229635}+frac{23429344 epsilon ^{10}}{189448875} +O(epsilon^{11}),.$$



          Now, the expansion of the integral in $epsilon$ yields
          $$ I(r_1) = pi -frac{pi epsilon ^2}{12}-frac{pi epsilon ^3}{18}-frac{23 pi epsilon
          ^4}{576}-frac{67 pi epsilon ^5}{2160}-frac{7613 pi epsilon
          ^6}{311040}-frac{21419 pi epsilon ^7}{1088640}-frac{320153 pi epsilon
          ^8}{19906560}-frac{31342051 pi epsilon ^9}{2351462400} + O(epsilon^{10}),.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 22 '18 at 6:42

























          answered Dec 22 '18 at 6:31









          FabianFabian

          20k3774




          20k3774












          • $begingroup$
            Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:49










          • $begingroup$
            All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
            $endgroup$
            – Yuri Negometyanov
            Dec 23 '18 at 8:27


















          • $begingroup$
            Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:49










          • $begingroup$
            All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
            $endgroup$
            – Yuri Negometyanov
            Dec 23 '18 at 8:27
















          $begingroup$
          Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
          $endgroup$
          – Shengkai Li
          Dec 23 '18 at 4:49




          $begingroup$
          Thanks, Fabian! I have verified your derivation in the problem description. I really appreciate your inspirational solution.
          $endgroup$
          – Shengkai Li
          Dec 23 '18 at 4:49












          $begingroup$
          All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
          $endgroup$
          – Yuri Negometyanov
          Dec 23 '18 at 8:27




          $begingroup$
          All right. You have proved $limlimits_{r_1to r_2} = pi.$ $(+1),$
          $endgroup$
          – Yuri Negometyanov
          Dec 23 '18 at 8:27











          3












          $begingroup$

          Firstly, the integral
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}tag1$$
          exists iff $r_2le 1,$ because the function $dfrac1r e^r$ has minimum at $r=1.$



          Taking in account that
          $$mathrm dleft(dfrac{e^r}rright)=left(dfrac1r - dfrac1{r^2}right)e^r,mathrm dr,$$
          one can get
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - intlimits_{r_1}^{r_2}dfrac1{sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}dleft(dfrac {e^r}rright),mathrm dr$$
          $$=intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - mathrm{arcsin}left(dfrac {r_1}{r}e^{r-r_1}right)Big|_{r_1}^{r_2}= I_1 + mathrm{arccos}left(dfrac{r_1}{r_2}e^{r_2-r_1}right),tag1$$
          where
          $$I_1 = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}.tag2$$
          Note that $I_1 le I,$ because $r_2 le1.$



          I cannot obtain the closed form for $(2).$



          On the other hand, using Taylor series at $x=1$ in the form of
          $$dfrac {e^x} {xsqrt{dfrac{e^{2a}}{a^2}-dfrac{e^{2x}}{x^2}}}
          = dfrac e{sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          - dfrac{e^{2a+1}(x-1)^2}{2left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{e^{2a+1}(x-1)^3}{3left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}$$

          $$ + dfrac{3e^{4a+1}(x-1)^4}{8left(e^{2a}-e^2 a^2right)^2 sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{left(-4e^{2a+3}a^2-11e^{4a+1}right)(x-1)^5}{30left(e^{2a}-e^2a^2right)^2sqrt{dfrac{e^{2a}}{a^2}-e^2}} + dots$$

          (see also Wolfram Alpha), one can get the estimation



          $$I_1 = dfrac1{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}
          int_{r_1}^{r_2}Bigg(1
          - dfrac{e^{2r_1}(r-1)^2}{2left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1}(r-1)^3}{3left(e^2 r_1^2-e^{2r_1}right)}$$

          $$ + dfrac{3e^{4r_1}(r-1)^4}{8left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1}right)(r-1)^5}{30left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg),mathrm dr,$$



          $$I_1 = dfrac {1}{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}Bigg((r_2-r_1)
          - dfrac{e^{2r_1}left((r_2-1)^3-(r_1-1)^3right)}{6left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1+1}left((r_2-1)^4-(r_1-1)^4right)}{12left(e^2 r_1^2-e^{2r_1}right) }$$

          $$ + dfrac{3e^{4r_1+1}left((r_2-1)^5-(r_1-1)^5right)}{40left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1+1}right)left((r_2-1)^6-(r_1-1)^6right)}{180left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg)$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, Yuri. I appreciate your time on this problem!
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:51
















          3












          $begingroup$

          Firstly, the integral
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}tag1$$
          exists iff $r_2le 1,$ because the function $dfrac1r e^r$ has minimum at $r=1.$



          Taking in account that
          $$mathrm dleft(dfrac{e^r}rright)=left(dfrac1r - dfrac1{r^2}right)e^r,mathrm dr,$$
          one can get
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - intlimits_{r_1}^{r_2}dfrac1{sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}dleft(dfrac {e^r}rright),mathrm dr$$
          $$=intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - mathrm{arcsin}left(dfrac {r_1}{r}e^{r-r_1}right)Big|_{r_1}^{r_2}= I_1 + mathrm{arccos}left(dfrac{r_1}{r_2}e^{r_2-r_1}right),tag1$$
          where
          $$I_1 = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}.tag2$$
          Note that $I_1 le I,$ because $r_2 le1.$



          I cannot obtain the closed form for $(2).$



          On the other hand, using Taylor series at $x=1$ in the form of
          $$dfrac {e^x} {xsqrt{dfrac{e^{2a}}{a^2}-dfrac{e^{2x}}{x^2}}}
          = dfrac e{sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          - dfrac{e^{2a+1}(x-1)^2}{2left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{e^{2a+1}(x-1)^3}{3left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}$$

          $$ + dfrac{3e^{4a+1}(x-1)^4}{8left(e^{2a}-e^2 a^2right)^2 sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{left(-4e^{2a+3}a^2-11e^{4a+1}right)(x-1)^5}{30left(e^{2a}-e^2a^2right)^2sqrt{dfrac{e^{2a}}{a^2}-e^2}} + dots$$

          (see also Wolfram Alpha), one can get the estimation



          $$I_1 = dfrac1{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}
          int_{r_1}^{r_2}Bigg(1
          - dfrac{e^{2r_1}(r-1)^2}{2left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1}(r-1)^3}{3left(e^2 r_1^2-e^{2r_1}right)}$$

          $$ + dfrac{3e^{4r_1}(r-1)^4}{8left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1}right)(r-1)^5}{30left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg),mathrm dr,$$



          $$I_1 = dfrac {1}{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}Bigg((r_2-r_1)
          - dfrac{e^{2r_1}left((r_2-1)^3-(r_1-1)^3right)}{6left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1+1}left((r_2-1)^4-(r_1-1)^4right)}{12left(e^2 r_1^2-e^{2r_1}right) }$$

          $$ + dfrac{3e^{4r_1+1}left((r_2-1)^5-(r_1-1)^5right)}{40left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1+1}right)left((r_2-1)^6-(r_1-1)^6right)}{180left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg)$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks, Yuri. I appreciate your time on this problem!
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:51














          3












          3








          3





          $begingroup$

          Firstly, the integral
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}tag1$$
          exists iff $r_2le 1,$ because the function $dfrac1r e^r$ has minimum at $r=1.$



          Taking in account that
          $$mathrm dleft(dfrac{e^r}rright)=left(dfrac1r - dfrac1{r^2}right)e^r,mathrm dr,$$
          one can get
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - intlimits_{r_1}^{r_2}dfrac1{sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}dleft(dfrac {e^r}rright),mathrm dr$$
          $$=intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - mathrm{arcsin}left(dfrac {r_1}{r}e^{r-r_1}right)Big|_{r_1}^{r_2}= I_1 + mathrm{arccos}left(dfrac{r_1}{r_2}e^{r_2-r_1}right),tag1$$
          where
          $$I_1 = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}.tag2$$
          Note that $I_1 le I,$ because $r_2 le1.$



          I cannot obtain the closed form for $(2).$



          On the other hand, using Taylor series at $x=1$ in the form of
          $$dfrac {e^x} {xsqrt{dfrac{e^{2a}}{a^2}-dfrac{e^{2x}}{x^2}}}
          = dfrac e{sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          - dfrac{e^{2a+1}(x-1)^2}{2left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{e^{2a+1}(x-1)^3}{3left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}$$

          $$ + dfrac{3e^{4a+1}(x-1)^4}{8left(e^{2a}-e^2 a^2right)^2 sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{left(-4e^{2a+3}a^2-11e^{4a+1}right)(x-1)^5}{30left(e^{2a}-e^2a^2right)^2sqrt{dfrac{e^{2a}}{a^2}-e^2}} + dots$$

          (see also Wolfram Alpha), one can get the estimation



          $$I_1 = dfrac1{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}
          int_{r_1}^{r_2}Bigg(1
          - dfrac{e^{2r_1}(r-1)^2}{2left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1}(r-1)^3}{3left(e^2 r_1^2-e^{2r_1}right)}$$

          $$ + dfrac{3e^{4r_1}(r-1)^4}{8left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1}right)(r-1)^5}{30left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg),mathrm dr,$$



          $$I_1 = dfrac {1}{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}Bigg((r_2-r_1)
          - dfrac{e^{2r_1}left((r_2-1)^3-(r_1-1)^3right)}{6left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1+1}left((r_2-1)^4-(r_1-1)^4right)}{12left(e^2 r_1^2-e^{2r_1}right) }$$

          $$ + dfrac{3e^{4r_1+1}left((r_2-1)^5-(r_1-1)^5right)}{40left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1+1}right)left((r_2-1)^6-(r_1-1)^6right)}{180left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg)$$






          share|cite|improve this answer











          $endgroup$



          Firstly, the integral
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}tag1$$
          exists iff $r_2le 1,$ because the function $dfrac1r e^r$ has minimum at $r=1.$



          Taking in account that
          $$mathrm dleft(dfrac{e^r}rright)=left(dfrac1r - dfrac1{r^2}right)e^r,mathrm dr,$$
          one can get
          $$I = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{r^2sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - intlimits_{r_1}^{r_2}dfrac1{sqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}dleft(dfrac {e^r}rright),mathrm dr$$
          $$=intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}} - mathrm{arcsin}left(dfrac {r_1}{r}e^{r-r_1}right)Big|_{r_1}^{r_2}= I_1 + mathrm{arccos}left(dfrac{r_1}{r_2}e^{r_2-r_1}right),tag1$$
          where
          $$I_1 = intlimits_{r_1}^{r_2}dfrac{e^r,mathrm dr}{rsqrt{left(dfrac{e^{r_1}}{r_1}right)^2-left(dfrac{e^r}rright)^2}}.tag2$$
          Note that $I_1 le I,$ because $r_2 le1.$



          I cannot obtain the closed form for $(2).$



          On the other hand, using Taylor series at $x=1$ in the form of
          $$dfrac {e^x} {xsqrt{dfrac{e^{2a}}{a^2}-dfrac{e^{2x}}{x^2}}}
          = dfrac e{sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          - dfrac{e^{2a+1}(x-1)^2}{2left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{e^{2a+1}(x-1)^3}{3left(e^2 a^2-e^{2a}right) sqrt{dfrac{e^{2a}}{a^2}-e^2}}$$

          $$ + dfrac{3e^{4a+1}(x-1)^4}{8left(e^{2a}-e^2 a^2right)^2 sqrt{dfrac{e^{2a}}{a^2}-e^2}}
          + dfrac{left(-4e^{2a+3}a^2-11e^{4a+1}right)(x-1)^5}{30left(e^{2a}-e^2a^2right)^2sqrt{dfrac{e^{2a}}{a^2}-e^2}} + dots$$

          (see also Wolfram Alpha), one can get the estimation



          $$I_1 = dfrac1{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}
          int_{r_1}^{r_2}Bigg(1
          - dfrac{e^{2r_1}(r-1)^2}{2left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1}(r-1)^3}{3left(e^2 r_1^2-e^{2r_1}right)}$$

          $$ + dfrac{3e^{4r_1}(r-1)^4}{8left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1}right)(r-1)^5}{30left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg),mathrm dr,$$



          $$I_1 = dfrac {1}{sqrt{dfrac{e^{2r_1-2}}{r_1^2}-1}}Bigg((r_2-r_1)
          - dfrac{e^{2r_1}left((r_2-1)^3-(r_1-1)^3right)}{6left(e^2 r_1^2-e^{2r_1}right)}
          + dfrac{e^{2r_1+1}left((r_2-1)^4-(r_1-1)^4right)}{12left(e^2 r_1^2-e^{2r_1}right) }$$

          $$ + dfrac{3e^{4r_1+1}left((r_2-1)^5-(r_1-1)^5right)}{40left(e^{2r_1}-e^2 r_1^2right)^2}
          + dfrac{left(-4e^{2r_1+3}r_1^2-11e^{4r_1+1}right)left((r_2-1)^6-(r_1-1)^6right)}{180left(e^{2r_1}-e^2r_1^2right)^2} + dotsBigg)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 23 '18 at 2:18

























          answered Dec 20 '18 at 4:30









          Yuri NegometyanovYuri Negometyanov

          12.5k1729




          12.5k1729












          • $begingroup$
            Thanks, Yuri. I appreciate your time on this problem!
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:51


















          • $begingroup$
            Thanks, Yuri. I appreciate your time on this problem!
            $endgroup$
            – Shengkai Li
            Dec 23 '18 at 4:51
















          $begingroup$
          Thanks, Yuri. I appreciate your time on this problem!
          $endgroup$
          – Shengkai Li
          Dec 23 '18 at 4:51




          $begingroup$
          Thanks, Yuri. I appreciate your time on this problem!
          $endgroup$
          – Shengkai Li
          Dec 23 '18 at 4:51


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038661%2fclosed-form-of-an-improper-integral-to-solve-the-period-of-a-dynamical-system%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?