Need a math help for the Cagan's model in macroeconomics












2












$begingroup$


From the appendix after the chapter 4 in Macroeconomics 7th edition by Gregory Mankiw.




To keep the math as simple as possible, we posit a money demand function that is linear in the natural logarithms of all the variables. The money demand function is



$m_t − p_t = −gamma( p_{t+1} − p_t)$,



where $m_t$ is the log of the quantity of money at time t, $p_t$ is the log of the price level at time t, and $gamma$ is a parameter that governs the sensitivity of money demand to the rate of inflation. By the property of logarithms, $m_t − p_t$ is the log of real money balances, and $p_{t+1} − p_t$ is the inflation rate between period t and period t+1. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.





  1. Shouldn't $(p_{t+1} - p_t)$ be the log of inflation rate? Why it says just "the inflation rate"?




  2. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.




    My math level is like that of a high school. Would anyone be so nice and explain this for me? To me, it doesn't make sense at all.



    $ln frac{M}{P} = ln (frac{p_{t+1}}{p_t})^{-gamma} rightarrow frac{M}{P} = (frac{p_{t+1}}{p_t})^{-gamma}$



    So, if the $(p_{t+1} - p_t)$ is just the log of inflation rate, then $frac{p_{t+1}}{p_t}$ is the inflation rate and,




    inflation goes up by 1 percentage point




    would mean $frac{p_{t+1}}{p_t}$ is going to get +1, right? But I couldn't possibly think it would result the fall of $frac{M}{P}$ by the $gamma$ point. What am I missing?



    And secondly, if the $(p_{t+1} - p_t)$ is just the inflation rate,(not the log of any) then it bugs me more than the former. So, +1 change to the inflation rate is like nothing but that we would get "$−gamma(1 + p_{t+1} − p_t)$" at the right side, right? How could this be the case?












share|improve this question











$endgroup$

















    2












    $begingroup$


    From the appendix after the chapter 4 in Macroeconomics 7th edition by Gregory Mankiw.




    To keep the math as simple as possible, we posit a money demand function that is linear in the natural logarithms of all the variables. The money demand function is



    $m_t − p_t = −gamma( p_{t+1} − p_t)$,



    where $m_t$ is the log of the quantity of money at time t, $p_t$ is the log of the price level at time t, and $gamma$ is a parameter that governs the sensitivity of money demand to the rate of inflation. By the property of logarithms, $m_t − p_t$ is the log of real money balances, and $p_{t+1} − p_t$ is the inflation rate between period t and period t+1. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.





    1. Shouldn't $(p_{t+1} - p_t)$ be the log of inflation rate? Why it says just "the inflation rate"?




    2. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.




      My math level is like that of a high school. Would anyone be so nice and explain this for me? To me, it doesn't make sense at all.



      $ln frac{M}{P} = ln (frac{p_{t+1}}{p_t})^{-gamma} rightarrow frac{M}{P} = (frac{p_{t+1}}{p_t})^{-gamma}$



      So, if the $(p_{t+1} - p_t)$ is just the log of inflation rate, then $frac{p_{t+1}}{p_t}$ is the inflation rate and,




      inflation goes up by 1 percentage point




      would mean $frac{p_{t+1}}{p_t}$ is going to get +1, right? But I couldn't possibly think it would result the fall of $frac{M}{P}$ by the $gamma$ point. What am I missing?



      And secondly, if the $(p_{t+1} - p_t)$ is just the inflation rate,(not the log of any) then it bugs me more than the former. So, +1 change to the inflation rate is like nothing but that we would get "$−gamma(1 + p_{t+1} − p_t)$" at the right side, right? How could this be the case?












    share|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      From the appendix after the chapter 4 in Macroeconomics 7th edition by Gregory Mankiw.




      To keep the math as simple as possible, we posit a money demand function that is linear in the natural logarithms of all the variables. The money demand function is



      $m_t − p_t = −gamma( p_{t+1} − p_t)$,



      where $m_t$ is the log of the quantity of money at time t, $p_t$ is the log of the price level at time t, and $gamma$ is a parameter that governs the sensitivity of money demand to the rate of inflation. By the property of logarithms, $m_t − p_t$ is the log of real money balances, and $p_{t+1} − p_t$ is the inflation rate between period t and period t+1. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.





      1. Shouldn't $(p_{t+1} - p_t)$ be the log of inflation rate? Why it says just "the inflation rate"?




      2. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.




        My math level is like that of a high school. Would anyone be so nice and explain this for me? To me, it doesn't make sense at all.



        $ln frac{M}{P} = ln (frac{p_{t+1}}{p_t})^{-gamma} rightarrow frac{M}{P} = (frac{p_{t+1}}{p_t})^{-gamma}$



        So, if the $(p_{t+1} - p_t)$ is just the log of inflation rate, then $frac{p_{t+1}}{p_t}$ is the inflation rate and,




        inflation goes up by 1 percentage point




        would mean $frac{p_{t+1}}{p_t}$ is going to get +1, right? But I couldn't possibly think it would result the fall of $frac{M}{P}$ by the $gamma$ point. What am I missing?



        And secondly, if the $(p_{t+1} - p_t)$ is just the inflation rate,(not the log of any) then it bugs me more than the former. So, +1 change to the inflation rate is like nothing but that we would get "$−gamma(1 + p_{t+1} − p_t)$" at the right side, right? How could this be the case?












      share|improve this question











      $endgroup$




      From the appendix after the chapter 4 in Macroeconomics 7th edition by Gregory Mankiw.




      To keep the math as simple as possible, we posit a money demand function that is linear in the natural logarithms of all the variables. The money demand function is



      $m_t − p_t = −gamma( p_{t+1} − p_t)$,



      where $m_t$ is the log of the quantity of money at time t, $p_t$ is the log of the price level at time t, and $gamma$ is a parameter that governs the sensitivity of money demand to the rate of inflation. By the property of logarithms, $m_t − p_t$ is the log of real money balances, and $p_{t+1} − p_t$ is the inflation rate between period t and period t+1. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.





      1. Shouldn't $(p_{t+1} - p_t)$ be the log of inflation rate? Why it says just "the inflation rate"?




      2. This equation states that if inflation goes up by 1 percentage point, real money balances fall by $gamma$ percent.




        My math level is like that of a high school. Would anyone be so nice and explain this for me? To me, it doesn't make sense at all.



        $ln frac{M}{P} = ln (frac{p_{t+1}}{p_t})^{-gamma} rightarrow frac{M}{P} = (frac{p_{t+1}}{p_t})^{-gamma}$



        So, if the $(p_{t+1} - p_t)$ is just the log of inflation rate, then $frac{p_{t+1}}{p_t}$ is the inflation rate and,




        inflation goes up by 1 percentage point




        would mean $frac{p_{t+1}}{p_t}$ is going to get +1, right? But I couldn't possibly think it would result the fall of $frac{M}{P}$ by the $gamma$ point. What am I missing?



        And secondly, if the $(p_{t+1} - p_t)$ is just the inflation rate,(not the log of any) then it bugs me more than the former. So, +1 change to the inflation rate is like nothing but that we would get "$−gamma(1 + p_{t+1} − p_t)$" at the right side, right? How could this be the case?









      mathematical-economics






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 24 at 10:19









      Giskard

      13.5k32248




      13.5k32248










      asked Mar 24 at 10:09









      dolcodolco

      1304




      1304






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The answer to both your questions is that for small $x$ values
          $$
          ln(1+x) approx x,
          $$

          the difference being less than $x^2/2$. (Proof by Taylor-approximation.)



          So if inflation is around 10%, then the absolute error from this type of approximation is less then 0.5%, which is pretty good.



          This should also answer your second question, as the approximation
          $$
          gamma x approx ln(1+ gamma x),
          $$

          works as well.



          It may also be worthwhile to look into elasticity.






          share|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "591"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f27434%2fneed-a-math-help-for-the-cagans-model-in-macroeconomics%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The answer to both your questions is that for small $x$ values
            $$
            ln(1+x) approx x,
            $$

            the difference being less than $x^2/2$. (Proof by Taylor-approximation.)



            So if inflation is around 10%, then the absolute error from this type of approximation is less then 0.5%, which is pretty good.



            This should also answer your second question, as the approximation
            $$
            gamma x approx ln(1+ gamma x),
            $$

            works as well.



            It may also be worthwhile to look into elasticity.






            share|improve this answer









            $endgroup$


















              3












              $begingroup$

              The answer to both your questions is that for small $x$ values
              $$
              ln(1+x) approx x,
              $$

              the difference being less than $x^2/2$. (Proof by Taylor-approximation.)



              So if inflation is around 10%, then the absolute error from this type of approximation is less then 0.5%, which is pretty good.



              This should also answer your second question, as the approximation
              $$
              gamma x approx ln(1+ gamma x),
              $$

              works as well.



              It may also be worthwhile to look into elasticity.






              share|improve this answer









              $endgroup$
















                3












                3








                3





                $begingroup$

                The answer to both your questions is that for small $x$ values
                $$
                ln(1+x) approx x,
                $$

                the difference being less than $x^2/2$. (Proof by Taylor-approximation.)



                So if inflation is around 10%, then the absolute error from this type of approximation is less then 0.5%, which is pretty good.



                This should also answer your second question, as the approximation
                $$
                gamma x approx ln(1+ gamma x),
                $$

                works as well.



                It may also be worthwhile to look into elasticity.






                share|improve this answer









                $endgroup$



                The answer to both your questions is that for small $x$ values
                $$
                ln(1+x) approx x,
                $$

                the difference being less than $x^2/2$. (Proof by Taylor-approximation.)



                So if inflation is around 10%, then the absolute error from this type of approximation is less then 0.5%, which is pretty good.



                This should also answer your second question, as the approximation
                $$
                gamma x approx ln(1+ gamma x),
                $$

                works as well.



                It may also be worthwhile to look into elasticity.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Mar 24 at 10:19









                GiskardGiskard

                13.5k32248




                13.5k32248






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Economics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f27434%2fneed-a-math-help-for-the-cagans-model-in-macroeconomics%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?