Using Vieta's formula to evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$
$begingroup$
Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,
$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$
How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?
Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$
and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.
analysis cubic-equations
$endgroup$
add a comment |
$begingroup$
Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,
$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$
How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?
Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$
and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.
analysis cubic-equations
$endgroup$
$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04
4
$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16
$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34
add a comment |
$begingroup$
Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,
$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$
How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?
Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$
and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.
analysis cubic-equations
$endgroup$
Using the cubic equation $ax^3 + bx^2 + cx +d = 0$,
$$x_1 + x_2 + x_3 = -frac{b}{a},$$
$$x_1x_2 + x_2x_3 + x_1x_3 = frac{c}{a},$$
$$x_1x_2x_3 = -frac{d}{a},$$
How would one evaluate $frac{x_1}{x_2} + frac{x_2}{x_3} + frac{x_3}{x_1}$?
Edit: I'm at this point currently:
$$frac{x_1^2x_3 + x_1x_2^2 + x_2x_3^2}{x_1x_2x_3}$$
and don't know how to separate the single $x_1, x_2, x_3$ from the fraction.
analysis cubic-equations
analysis cubic-equations
edited Dec 10 '18 at 19:31
Martin R
30.5k33558
30.5k33558
asked Dec 10 '18 at 18:59
Stefan IvanovskiStefan Ivanovski
546
546
$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04
4
$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16
$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34
add a comment |
$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04
4
$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16
$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34
$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04
$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04
4
4
$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16
$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16
$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34
$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
$$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
$$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
That is,
$$p+q=frac{BC-3D}{D}$$
and
$$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
Therefore, $p$ and $q$ are the roots of
$$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
which is the same as
$$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$
For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$
$endgroup$
add a comment |
$begingroup$
You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034339%2fusing-vietas-formula-to-evaluate-fracx-1x-2-fracx-2x-3-fracx-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
$$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
$$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
That is,
$$p+q=frac{BC-3D}{D}$$
and
$$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
Therefore, $p$ and $q$ are the roots of
$$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
which is the same as
$$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$
For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$
$endgroup$
add a comment |
$begingroup$
Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
$$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
$$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
That is,
$$p+q=frac{BC-3D}{D}$$
and
$$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
Therefore, $p$ and $q$ are the roots of
$$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
which is the same as
$$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$
For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$
$endgroup$
add a comment |
$begingroup$
Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
$$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
$$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
That is,
$$p+q=frac{BC-3D}{D}$$
and
$$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
Therefore, $p$ and $q$ are the roots of
$$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
which is the same as
$$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$
For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$
$endgroup$
Let $r,s,t$ be the roots. For simplicity, write $B=-b/a=r+s+t$, $C=c/a=st+tr+rs$, and $D=-d/a=rst$. Let $p= frac{r}{s}+frac{s}{t}+frac{t}{r}$ and $q=frac{s}{r}+frac{t}{s}+frac{r}{t}$. Then,
$$p+q=frac{r^2(s+t)+s^2(t+r)+t^2(r+s)}{rst}.$$
$$pq=3+frac{r^4st+s^4tr+t^4rs+s^3t^3+t^3r^3+r^3s^3}{r^2s^2t^2}.$$
That is,
$$p+q=frac{BC-3D}{D}$$
and
$$pq=3+frac{C^3+B^3D-6BCD+6D^2}{D^2}=frac{C^3+B^3D-6BCD+9D^2}{D^2}.$$
Therefore, $p$ and $q$ are the roots of
$$x^2-frac{BC-3D}{D}x+frac{C^3+B^3D-6BCD+9D^2}{D^2},$$
which is the same as
$$x^2+frac{3ad-bc}{ad}x+frac{9a^2d^2-6abcd+ac^3+b^3d}{a^2d^2}.$$
For example, $B=6$, $C=11$, and $D=6$ give $$x^2-8x+frac{575}{36}=left(x-frac{23}{6}right)left(x-frac{25}{6}right).$$
Indeed, ${r,s,t}={1,2,3}$, so $${p,q}=left{frac12+frac23+frac31,frac21+frac32+frac13right}=left{frac{25}{6},frac{23}{6}right}.$$
edited Dec 10 '18 at 19:33
answered Dec 10 '18 at 19:29
user614671
add a comment |
add a comment |
$begingroup$
You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.
$endgroup$
add a comment |
$begingroup$
You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.
$endgroup$
add a comment |
$begingroup$
You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.
$endgroup$
You can consider $$frac{x_2}{x_1} + frac{x_3}{x_2} + frac{x_1}{x_3}$$
The sum and product of this and your expression are symmetric. So you can evaluate them using $a, b, c, d$.
So this things are roots of the polynomial of degree 2 with coefficients expressed by $a, b, c, d$.
answered Dec 10 '18 at 19:14
Egor VeprevEgor Veprev
212
212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034339%2fusing-vietas-formula-to-evaluate-fracx-1x-2-fracx-2x-3-fracx-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint to get started (I haven't tried). Put the three fractions over a common denominator.
$endgroup$
– Ethan Bolker
Dec 10 '18 at 19:04
4
$begingroup$
There should be two possible answers. If the roots are $r,s,t$, then $(x_1,x_2,x_3)=(r,s,t)$ and $(x_1,x_2,x_3)=(r,t,s)$ are probably going to give you different results.
$endgroup$
– user614671
Dec 10 '18 at 19:16
$begingroup$
Note that the expression you're dealing with is cyclic rather than symmetric, whereas Vieta's Formulas are thought for symmetric and not cyclic expressions... This might lead to multiple answers
$endgroup$
– Dr. Mathva
Dec 10 '18 at 19:34