Prove $Delta text{ABC}$ is a right triangle?
$begingroup$
Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:
$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$
I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !
geometry trigonometry inequality
$endgroup$
add a comment |
$begingroup$
Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:
$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$
I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !
geometry trigonometry inequality
$endgroup$
$begingroup$
Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
$endgroup$
– Christian Blatter
Dec 9 '18 at 11:01
1
$begingroup$
I mean for all $text{k}$ ! Thanks !
$endgroup$
– HaiDangel
Dec 9 '18 at 12:33
add a comment |
$begingroup$
Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:
$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$
I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !
geometry trigonometry inequality
$endgroup$
Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:
$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$
I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !
geometry trigonometry inequality
geometry trigonometry inequality
edited Dec 9 '18 at 13:19
HaiDangel
asked Dec 9 '18 at 7:19
HaiDangelHaiDangel
695
695
$begingroup$
Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
$endgroup$
– Christian Blatter
Dec 9 '18 at 11:01
1
$begingroup$
I mean for all $text{k}$ ! Thanks !
$endgroup$
– HaiDangel
Dec 9 '18 at 12:33
add a comment |
$begingroup$
Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
$endgroup$
– Christian Blatter
Dec 9 '18 at 11:01
1
$begingroup$
I mean for all $text{k}$ ! Thanks !
$endgroup$
– HaiDangel
Dec 9 '18 at 12:33
$begingroup$
Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
$endgroup$
– Christian Blatter
Dec 9 '18 at 11:01
$begingroup$
Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
$endgroup$
– Christian Blatter
Dec 9 '18 at 11:01
1
1
$begingroup$
I mean for all $text{k}$ ! Thanks !
$endgroup$
– HaiDangel
Dec 9 '18 at 12:33
$begingroup$
I mean for all $text{k}$ ! Thanks !
$endgroup$
– HaiDangel
Dec 9 '18 at 12:33
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get
$$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying
$$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
}-{c}^{2} right)
=0$$
it remaines to show that the first factor can not be zero.
$endgroup$
1
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032114%2fprove-delta-textabc-is-a-right-triangle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get
$$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying
$$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
}-{c}^{2} right)
=0$$
it remaines to show that the first factor can not be zero.
$endgroup$
1
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
add a comment |
$begingroup$
One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get
$$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying
$$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
}-{c}^{2} right)
=0$$
it remaines to show that the first factor can not be zero.
$endgroup$
1
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
add a comment |
$begingroup$
One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get
$$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying
$$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
}-{c}^{2} right)
=0$$
it remaines to show that the first factor can not be zero.
$endgroup$
One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get
$$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying
$$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
}-{c}^{2} right)
=0$$
it remaines to show that the first factor can not be zero.
answered Dec 9 '18 at 10:12
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
77.8k42866
77.8k42866
1
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
add a comment |
1
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
1
1
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
$begingroup$
Can you try to solve the rest on your own ? I think your solution is the neatest !
$endgroup$
– HaiDangel
Jan 31 at 3:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032114%2fprove-delta-textabc-is-a-right-triangle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
$endgroup$
– Christian Blatter
Dec 9 '18 at 11:01
1
$begingroup$
I mean for all $text{k}$ ! Thanks !
$endgroup$
– HaiDangel
Dec 9 '18 at 12:33