First Order Logic: how to prove the formula?
$begingroup$
How to show this formula using axioms of First Order Logic: $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )rightarrow (P(x_0,x_2) rightarrow Q(x_0,x_2)))$?
$textbf{My work}:$
1) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom of equality
2) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)) rightarrowforall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom
3)$forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - MP(1,2)
4) 2 times I repeat similar steps like in 1), 2), 3) and get $(x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)$
5) With $Q$ I do the same thing and get $(x_{0}=x_{1})wedge Q(x_1,x_2) rightarrow Q(x_0,x_1)$.
I dont know what to do next...
logic first-order-logic
$endgroup$
add a comment |
$begingroup$
How to show this formula using axioms of First Order Logic: $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )rightarrow (P(x_0,x_2) rightarrow Q(x_0,x_2)))$?
$textbf{My work}:$
1) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom of equality
2) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)) rightarrowforall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom
3)$forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - MP(1,2)
4) 2 times I repeat similar steps like in 1), 2), 3) and get $(x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)$
5) With $Q$ I do the same thing and get $(x_{0}=x_{1})wedge Q(x_1,x_2) rightarrow Q(x_0,x_1)$.
I dont know what to do next...
logic first-order-logic
$endgroup$
$begingroup$
I thought about it $ ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )vdash(P(x_0,x_2) rightarrow Q(x_0,x_2))$?? But I have no idea how to show it...
$endgroup$
– Aleksandra
Dec 9 '18 at 10:53
add a comment |
$begingroup$
How to show this formula using axioms of First Order Logic: $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )rightarrow (P(x_0,x_2) rightarrow Q(x_0,x_2)))$?
$textbf{My work}:$
1) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom of equality
2) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)) rightarrowforall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom
3)$forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - MP(1,2)
4) 2 times I repeat similar steps like in 1), 2), 3) and get $(x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)$
5) With $Q$ I do the same thing and get $(x_{0}=x_{1})wedge Q(x_1,x_2) rightarrow Q(x_0,x_1)$.
I dont know what to do next...
logic first-order-logic
$endgroup$
How to show this formula using axioms of First Order Logic: $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )rightarrow (P(x_0,x_2) rightarrow Q(x_0,x_2)))$?
$textbf{My work}:$
1) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom of equality
2) $forall x_{0}, forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)) rightarrowforall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - axiom
3)$forall x_{1}, forall x_2 ((x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1))$ - MP(1,2)
4) 2 times I repeat similar steps like in 1), 2), 3) and get $(x_{0}=x_{1})wedge P(x_1,x_2) rightarrow P(x_0,x_1)$
5) With $Q$ I do the same thing and get $(x_{0}=x_{1})wedge Q(x_1,x_2) rightarrow Q(x_0,x_1)$.
I dont know what to do next...
logic first-order-logic
logic first-order-logic
asked Dec 9 '18 at 9:12
Aleksandra Aleksandra
545
545
$begingroup$
I thought about it $ ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )vdash(P(x_0,x_2) rightarrow Q(x_0,x_2))$?? But I have no idea how to show it...
$endgroup$
– Aleksandra
Dec 9 '18 at 10:53
add a comment |
$begingroup$
I thought about it $ ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )vdash(P(x_0,x_2) rightarrow Q(x_0,x_2))$?? But I have no idea how to show it...
$endgroup$
– Aleksandra
Dec 9 '18 at 10:53
$begingroup$
I thought about it $ ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )vdash(P(x_0,x_2) rightarrow Q(x_0,x_2))$?? But I have no idea how to show it...
$endgroup$
– Aleksandra
Dec 9 '18 at 10:53
$begingroup$
I thought about it $ ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )vdash(P(x_0,x_2) rightarrow Q(x_0,x_2))$?? But I have no idea how to show it...
$endgroup$
– Aleksandra
Dec 9 '18 at 10:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint
The formula :
$∀x_0,∀x_1,∀x_2((x_0=x_1) ∧ (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$
is a simple "variant" of the substitution axiom for equality :
$vdash ( x = y) to (phi[z:=x] to phi[z:=y])$
where $phi(z)$ is : $P(z,x_2) → Q(z,x_2)$.
Thus, we have to start from $(x_0=x_1)$ and with equality axioms derive : $(x_1=x_0)$.
Then apply the above axiom schema to get :
$(x_0=x_1) vdash (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$.
Finally, we have to use the Deduction Theorem followed by Generalization thrice.
$endgroup$
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032185%2ffirst-order-logic-how-to-prove-the-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
The formula :
$∀x_0,∀x_1,∀x_2((x_0=x_1) ∧ (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$
is a simple "variant" of the substitution axiom for equality :
$vdash ( x = y) to (phi[z:=x] to phi[z:=y])$
where $phi(z)$ is : $P(z,x_2) → Q(z,x_2)$.
Thus, we have to start from $(x_0=x_1)$ and with equality axioms derive : $(x_1=x_0)$.
Then apply the above axiom schema to get :
$(x_0=x_1) vdash (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$.
Finally, we have to use the Deduction Theorem followed by Generalization thrice.
$endgroup$
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
add a comment |
$begingroup$
Hint
The formula :
$∀x_0,∀x_1,∀x_2((x_0=x_1) ∧ (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$
is a simple "variant" of the substitution axiom for equality :
$vdash ( x = y) to (phi[z:=x] to phi[z:=y])$
where $phi(z)$ is : $P(z,x_2) → Q(z,x_2)$.
Thus, we have to start from $(x_0=x_1)$ and with equality axioms derive : $(x_1=x_0)$.
Then apply the above axiom schema to get :
$(x_0=x_1) vdash (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$.
Finally, we have to use the Deduction Theorem followed by Generalization thrice.
$endgroup$
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
add a comment |
$begingroup$
Hint
The formula :
$∀x_0,∀x_1,∀x_2((x_0=x_1) ∧ (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$
is a simple "variant" of the substitution axiom for equality :
$vdash ( x = y) to (phi[z:=x] to phi[z:=y])$
where $phi(z)$ is : $P(z,x_2) → Q(z,x_2)$.
Thus, we have to start from $(x_0=x_1)$ and with equality axioms derive : $(x_1=x_0)$.
Then apply the above axiom schema to get :
$(x_0=x_1) vdash (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$.
Finally, we have to use the Deduction Theorem followed by Generalization thrice.
$endgroup$
Hint
The formula :
$∀x_0,∀x_1,∀x_2((x_0=x_1) ∧ (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$
is a simple "variant" of the substitution axiom for equality :
$vdash ( x = y) to (phi[z:=x] to phi[z:=y])$
where $phi(z)$ is : $P(z,x_2) → Q(z,x_2)$.
Thus, we have to start from $(x_0=x_1)$ and with equality axioms derive : $(x_1=x_0)$.
Then apply the above axiom schema to get :
$(x_0=x_1) vdash (P(x_1,x_2) → Q(x_1,x_2)) → (P(x_0,x_2) → Q(x_0,x_2)))$.
Finally, we have to use the Deduction Theorem followed by Generalization thrice.
answered Dec 9 '18 at 11:27
Mauro ALLEGRANZAMauro ALLEGRANZA
67.2k449115
67.2k449115
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
add a comment |
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
$begingroup$
Can we prove it using beginning of my proof? Is it possible?
$endgroup$
– Aleksandra
Dec 10 '18 at 8:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032185%2ffirst-order-logic-how-to-prove-the-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I thought about it $ ((x_{0}=x_{1})wedge (P(x_1,x_2) rightarrow Q(x_1,x_2) )vdash(P(x_0,x_2) rightarrow Q(x_0,x_2))$?? But I have no idea how to show it...
$endgroup$
– Aleksandra
Dec 9 '18 at 10:53