Definition A.3.1.5 of Higher Topos Theory












3












$begingroup$


I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09


















3












$begingroup$


I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09
















3












3








3





$begingroup$


I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?










share|cite|improve this question











$endgroup$




I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?







higher-category-theory model-categories






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 8:58









Francesco Polizzi

48.2k3128210




48.2k3128210










asked Mar 11 at 8:40









Frank KongFrank Kong

385




385












  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09




















  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09


















$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
Mar 11 at 9:09






$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
Mar 11 at 9:09












1 Answer
1






active

oldest

votes


















5












$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325158%2fdefinition-a-3-1-5-of-higher-topos-theory%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04
















5












$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04














5












5








5





$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$



Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 11 at 9:15









Stefano AriottaStefano Ariotta

33148




33148








  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04














  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04








1




1




$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
Mar 11 at 11:22




$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
Mar 11 at 11:22












$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
Mar 11 at 12:04




$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
Mar 11 at 12:04


















draft saved

draft discarded




















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325158%2fdefinition-a-3-1-5-of-higher-topos-theory%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents