How to find CDF of $Y=|X|wedge 2$ with $Xsim Laplace(lambda)$












1












$begingroup$


Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.



I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$



Then:



$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$



How can I continue?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
    $endgroup$
    – user10354138
    Dec 11 '18 at 13:06
















1












$begingroup$


Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.



I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$



Then:



$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$



How can I continue?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
    $endgroup$
    – user10354138
    Dec 11 '18 at 13:06














1












1








1


1



$begingroup$


Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.



I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$



Then:



$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$



How can I continue?










share|cite|improve this question











$endgroup$




Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.



I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$



Then:



$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$



How can I continue?







probability random-variables linear-transformations density-function monotone-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 11 '18 at 12:54







Marco Pittella

















asked Dec 11 '18 at 12:46









Marco PittellaMarco Pittella

1338




1338












  • $begingroup$
    Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
    $endgroup$
    – user10354138
    Dec 11 '18 at 13:06


















  • $begingroup$
    Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
    $endgroup$
    – user10354138
    Dec 11 '18 at 13:06
















$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06




$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06










1 Answer
1






active

oldest

votes


















2












$begingroup$

You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.



That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 15:55












  • $begingroup$
    I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 16:06












  • $begingroup$
    You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
    $endgroup$
    – drhab
    Dec 12 '18 at 9:17










  • $begingroup$
    Sure, I was wrong to transcribe. I edit!
    $endgroup$
    – Marco Pittella
    Dec 12 '18 at 9:29












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035249%2fhow-to-find-cdf-of-y-x-wedge-2-with-x-sim-laplace-lambda%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.



That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 15:55












  • $begingroup$
    I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 16:06












  • $begingroup$
    You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
    $endgroup$
    – drhab
    Dec 12 '18 at 9:17










  • $begingroup$
    Sure, I was wrong to transcribe. I edit!
    $endgroup$
    – Marco Pittella
    Dec 12 '18 at 9:29
















2












$begingroup$

You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.



That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 15:55












  • $begingroup$
    I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 16:06












  • $begingroup$
    You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
    $endgroup$
    – drhab
    Dec 12 '18 at 9:17










  • $begingroup$
    Sure, I was wrong to transcribe. I edit!
    $endgroup$
    – Marco Pittella
    Dec 12 '18 at 9:29














2












2








2





$begingroup$

You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.



That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$






share|cite|improve this answer









$endgroup$



You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.



That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 11 '18 at 13:06









drhabdrhab

104k545136




104k545136












  • $begingroup$
    Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 15:55












  • $begingroup$
    I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 16:06












  • $begingroup$
    You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
    $endgroup$
    – drhab
    Dec 12 '18 at 9:17










  • $begingroup$
    Sure, I was wrong to transcribe. I edit!
    $endgroup$
    – Marco Pittella
    Dec 12 '18 at 9:29


















  • $begingroup$
    Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 15:55












  • $begingroup$
    I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
    $endgroup$
    – Marco Pittella
    Dec 11 '18 at 16:06












  • $begingroup$
    You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
    $endgroup$
    – drhab
    Dec 12 '18 at 9:17










  • $begingroup$
    Sure, I was wrong to transcribe. I edit!
    $endgroup$
    – Marco Pittella
    Dec 12 '18 at 9:29
















$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55






$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55














$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06






$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06














$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17




$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17












$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29




$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035249%2fhow-to-find-cdf-of-y-x-wedge-2-with-x-sim-laplace-lambda%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?