How to find CDF of $Y=|X|wedge 2$ with $Xsim Laplace(lambda)$
$begingroup$
Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.
I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$
Then:
$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$
How can I continue?
probability random-variables linear-transformations density-function monotone-functions
$endgroup$
add a comment |
$begingroup$
Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.
I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$
Then:
$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$
How can I continue?
probability random-variables linear-transformations density-function monotone-functions
$endgroup$
$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06
add a comment |
$begingroup$
Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.
I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$
Then:
$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$
How can I continue?
probability random-variables linear-transformations density-function monotone-functions
$endgroup$
Given $X$ a bilateral exponential with density $f_X(x)=frac{1}{2}e^{-|x|}, forall xin mathbb{R}$ and $lambda=1$, i have to find CDF of $Y=|X|wedge 2$.
I know that $Y$ is not a monotonic function, so i can't apply the law of transformation of random variables.
I know that the support of $Y$ is $[0,2]$, so i can write $F_Y(y)=left{begin{matrix}
0 & if & y<0\
? & if & 0leq yleq 2\
1 & if &y>2
end{matrix}right.$
Then:
$F_y(y)=P(Yleq y)=P(|X|wedge 2leq y)=...$
How can I continue?
probability random-variables linear-transformations density-function monotone-functions
probability random-variables linear-transformations density-function monotone-functions
edited Dec 11 '18 at 12:54
Marco Pittella
asked Dec 11 '18 at 12:46
Marco PittellaMarco Pittella
1338
1338
$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06
add a comment |
$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06
$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06
$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.
That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$
$endgroup$
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035249%2fhow-to-find-cdf-of-y-x-wedge-2-with-x-sim-laplace-lambda%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.
That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$
$endgroup$
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
add a comment |
$begingroup$
You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.
That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$
$endgroup$
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
add a comment |
$begingroup$
You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.
That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$
$endgroup$
You are doing this for $0leq yleq 2$ so $|X|wedge2leq y$ is the same statement as $|X|leq y$.
That means that you can continue with:$$cdots=P(|X|leq y)=cdots$$
answered Dec 11 '18 at 13:06
drhabdrhab
104k545136
104k545136
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
add a comment |
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
Thanks for your answer, again! So: $P(|X|wedge 2leq y)=P(|X|leq y)=P(-yleq |X|leq y)=int_{-y}^{y}f_X(x)dx=int_{-y}^{0}f_X(x)dx+int_{0}^{y}f_X(x)dx=(frac{1}{2}-frac{1}{2}e^{-y})+(-frac{1}{2}e^{-y}-frac{1}{2})=-e^{-y}$. But solution says that $F_Y(y)=left{begin{matrix} 0 & if & yleq 0\ 1-e^{-y} & if & 0<yleq 2\ 1 & if & y>2 end{matrix}right.$ Where I wrong?
$endgroup$
– Marco Pittella
Dec 11 '18 at 15:55
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
I've bisected $|x|=left{begin{matrix}x & for & xgeq0\ -x & for & x< 0end{matrix}right.$. So I obtain $int_{-y}^{0}frac{1}{2}e^{-|x|}dx=int_{-y}^{0}frac{1}{2}e^{x}dx=frac{1}{2}[e^x]_{-y}^0=frac{1}{2}-frac{1}{2}e^{-y}$ and $int_{0}^{y}frac{1}{2}e^{-|x|}dx=int_{0}^{y}frac{1}{2}e^{-x}dx=frac{1}{2}[-e^x]_{0}^y=-frac{1}{2}e^{-y}-frac{1}{2}$.
$endgroup$
– Marco Pittella
Dec 11 '18 at 16:06
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
You forgot a minus sign in e-power in last line: $int_0^yfrac12e^{-x}dx=frac12[-e^{-x}]^y_0=frac12(1-e^{-y})$
$endgroup$
– drhab
Dec 12 '18 at 9:17
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
$begingroup$
Sure, I was wrong to transcribe. I edit!
$endgroup$
– Marco Pittella
Dec 12 '18 at 9:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035249%2fhow-to-find-cdf-of-y-x-wedge-2-with-x-sim-laplace-lambda%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Remember $lvert Xrvertwedge 2=min(lvert Xrvert,2)$, so this is $leq y$ when $lvert Xrvertleq y$ (since $yleq 2$).
$endgroup$
– user10354138
Dec 11 '18 at 13:06