Function modulation and dilatation in a Laplace transform












0












$begingroup$


My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?



For the modulation, I have the following relation:



$$
mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
$$



For the dilatation, I have the following relation:



$$
mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
$$



What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$



Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?



    For the modulation, I have the following relation:



    $$
    mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
    $$



    For the dilatation, I have the following relation:



    $$
    mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
    $$



    What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$



    Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?



      For the modulation, I have the following relation:



      $$
      mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
      $$



      For the dilatation, I have the following relation:



      $$
      mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
      $$



      What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$



      Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?










      share|cite|improve this question









      $endgroup$




      My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?



      For the modulation, I have the following relation:



      $$
      mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
      $$



      For the dilatation, I have the following relation:



      $$
      mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
      $$



      What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$



      Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?







      laplace-transform






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 12:53









      WizixWizix

      1032




      1032






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
          $$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
          $$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035257%2ffunction-modulation-and-dilatation-in-a-laplace-transform%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
            $$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
            $$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
              $$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
              $$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
                $$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
                $$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$






                share|cite|improve this answer











                $endgroup$



                Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
                $$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
                $$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 11 '18 at 14:08

























                answered Dec 11 '18 at 13:20









                Roberto RastapopoulosRoberto Rastapopoulos

                950425




                950425






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035257%2ffunction-modulation-and-dilatation-in-a-laplace-transform%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?