Function modulation and dilatation in a Laplace transform
$begingroup$
My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?
For the modulation, I have the following relation:
$$
mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
$$
For the dilatation, I have the following relation:
$$
mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
$$
What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$
Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?
laplace-transform
$endgroup$
add a comment |
$begingroup$
My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?
For the modulation, I have the following relation:
$$
mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
$$
For the dilatation, I have the following relation:
$$
mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
$$
What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$
Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?
laplace-transform
$endgroup$
add a comment |
$begingroup$
My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?
For the modulation, I have the following relation:
$$
mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
$$
For the dilatation, I have the following relation:
$$
mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
$$
What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$
Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?
laplace-transform
$endgroup$
My question is about something incomplete in my lesson. I learnt about the modulation and the dilatation of a function in the Laplace transform but what if I have both in the same time?
For the modulation, I have the following relation:
$$
mathcal{L}[e^{-gamma t} f(t)] = mathcal{L}[f](z + gamma)
$$
For the dilatation, I have the following relation:
$$
mathcal{L}[f(lambda t)] = frac{1}{lambda} mathcal{L}[f](frac{z}{lambda})
$$
What if I have the following Laplace transform : $mathcal{L}[e^{gamma t} f(frac{t}{lambda})]$
Is the answer $lambda mathcal{L}[f](lambda z - gamma)$ or $lambda mathcal{L}[f](lambda(z - gamma))$?
laplace-transform
laplace-transform
asked Dec 11 '18 at 12:53
WizixWizix
1032
1032
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
$$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
$$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035257%2ffunction-modulation-and-dilatation-in-a-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
$$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
$$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$
$endgroup$
add a comment |
$begingroup$
Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
$$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
$$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$
$endgroup$
add a comment |
$begingroup$
Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
$$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
$$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$
$endgroup$
Define modulation and dilation operators: $M_{gamma}f(t) = e^{-gamma t} f(t)$ and $D_{lambda}f(t) = f(lambda t)$. Then $t mapsto e^{gamma t} f(t/lambda)$ can be expressed as either $M_{-gamma} (D_{1/lambda} f)$ (dilation then modulation) or $D_{1/lambda}(M_{-gamma lambda} f)$ (modulation then dilation). Using either form, we obtain the same result.
$$mathcal L[M_{-gamma} (D_{1/lambda} f)](z) = mathcal L[D_{1/lambda} f](z gamma) = lambda mathcal L[f] (lambda(z - gamma))$$
$$mathcal L[D_{1/lambda}(M_{-gamma lambda} f)](z) = lambda mathcal L[M_{-gamma lambda} f](lambda z) = lambda mathcal L[f] (lambda (z - gamma))$$
edited Dec 11 '18 at 14:08
answered Dec 11 '18 at 13:20
Roberto RastapopoulosRoberto Rastapopoulos
950425
950425
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035257%2ffunction-modulation-and-dilatation-in-a-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown