Hint Prove $||b|^p-|a|^p-|a-b|^p|leq C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$












0












$begingroup$


I have looked at this inequality in several ways, but cannot find the correct path:



Show for $a,b in mathbb R$ and $C_{p} > 0$ with $p in ]1,infty[$
$||b|^p-|a|^p-|a-b|^p|leq C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$



My attempt:



In this first case



Looking at LHS: $|b|^p-|a|^p-|a-b|^pleq|b-a|^{p}-|a-b|^{p}=|a-b|^{p}-|a-b|^{p}=0$



and the RHS is: $C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$ and note $(|a|^{p-1}|a-b|+|a||a-b|^{p-1}) > 0$, so we could easily find $C_{p}$ (e.g. $1$) so that LHS $leq$ RHS



In the second case, looking at LHS: $|a|^p+|a-b|^p-|b|^p$ and attempting to prove LHS $geq$ RHS, all I can say is $|a|^p+|a-b|^p-|b|^pgeq |a|^p+|a|^p-|b|^p-|b|^p=2(|a|^p-|b|^p)...$ but this does not lead anywhere, does it?



Any ideas?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I have looked at this inequality in several ways, but cannot find the correct path:



    Show for $a,b in mathbb R$ and $C_{p} > 0$ with $p in ]1,infty[$
    $||b|^p-|a|^p-|a-b|^p|leq C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$



    My attempt:



    In this first case



    Looking at LHS: $|b|^p-|a|^p-|a-b|^pleq|b-a|^{p}-|a-b|^{p}=|a-b|^{p}-|a-b|^{p}=0$



    and the RHS is: $C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$ and note $(|a|^{p-1}|a-b|+|a||a-b|^{p-1}) > 0$, so we could easily find $C_{p}$ (e.g. $1$) so that LHS $leq$ RHS



    In the second case, looking at LHS: $|a|^p+|a-b|^p-|b|^p$ and attempting to prove LHS $geq$ RHS, all I can say is $|a|^p+|a-b|^p-|b|^pgeq |a|^p+|a|^p-|b|^p-|b|^p=2(|a|^p-|b|^p)...$ but this does not lead anywhere, does it?



    Any ideas?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I have looked at this inequality in several ways, but cannot find the correct path:



      Show for $a,b in mathbb R$ and $C_{p} > 0$ with $p in ]1,infty[$
      $||b|^p-|a|^p-|a-b|^p|leq C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$



      My attempt:



      In this first case



      Looking at LHS: $|b|^p-|a|^p-|a-b|^pleq|b-a|^{p}-|a-b|^{p}=|a-b|^{p}-|a-b|^{p}=0$



      and the RHS is: $C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$ and note $(|a|^{p-1}|a-b|+|a||a-b|^{p-1}) > 0$, so we could easily find $C_{p}$ (e.g. $1$) so that LHS $leq$ RHS



      In the second case, looking at LHS: $|a|^p+|a-b|^p-|b|^p$ and attempting to prove LHS $geq$ RHS, all I can say is $|a|^p+|a-b|^p-|b|^pgeq |a|^p+|a|^p-|b|^p-|b|^p=2(|a|^p-|b|^p)...$ but this does not lead anywhere, does it?



      Any ideas?










      share|cite|improve this question









      $endgroup$




      I have looked at this inequality in several ways, but cannot find the correct path:



      Show for $a,b in mathbb R$ and $C_{p} > 0$ with $p in ]1,infty[$
      $||b|^p-|a|^p-|a-b|^p|leq C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$



      My attempt:



      In this first case



      Looking at LHS: $|b|^p-|a|^p-|a-b|^pleq|b-a|^{p}-|a-b|^{p}=|a-b|^{p}-|a-b|^{p}=0$



      and the RHS is: $C_{p}(|a|^{p-1}|a-b|+|a||a-b|^{p-1})$ and note $(|a|^{p-1}|a-b|+|a||a-b|^{p-1}) > 0$, so we could easily find $C_{p}$ (e.g. $1$) so that LHS $leq$ RHS



      In the second case, looking at LHS: $|a|^p+|a-b|^p-|b|^p$ and attempting to prove LHS $geq$ RHS, all I can say is $|a|^p+|a-b|^p-|b|^pgeq |a|^p+|a|^p-|b|^p-|b|^p=2(|a|^p-|b|^p)...$ but this does not lead anywhere, does it?



      Any ideas?







      real-analysis measure-theory inequality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 11 '18 at 12:47









      SABOYSABOY

      710311




      710311






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035250%2fhint-prove-bp-ap-a-bp-leq-c-pap-1a-baa-bp-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035250%2fhint-prove-bp-ap-a-bp-leq-c-pap-1a-baa-bp-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?