sort and rank in spark RDD in one file












-1















I have an spark RDD as below



(maths,60)
(english,65)
(english,77)
(maths,23)
(maths,50)


I need to sort and rank the given RDD in one as below
(maths,23,1)
(maths,50,2)
(maths,50,3)
(english,65,1)
(english,77,2)



i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest










share|improve this question





























    -1















    I have an spark RDD as below



    (maths,60)
    (english,65)
    (english,77)
    (maths,23)
    (maths,50)


    I need to sort and rank the given RDD in one as below
    (maths,23,1)
    (maths,50,2)
    (maths,50,3)
    (english,65,1)
    (english,77,2)



    i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest










    share|improve this question



























      -1












      -1








      -1


      1






      I have an spark RDD as below



      (maths,60)
      (english,65)
      (english,77)
      (maths,23)
      (maths,50)


      I need to sort and rank the given RDD in one as below
      (maths,23,1)
      (maths,50,2)
      (maths,50,3)
      (english,65,1)
      (english,77,2)



      i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest










      share|improve this question
















      I have an spark RDD as below



      (maths,60)
      (english,65)
      (english,77)
      (maths,23)
      (maths,50)


      I need to sort and rank the given RDD in one as below
      (maths,23,1)
      (maths,50,2)
      (maths,50,3)
      (english,65,1)
      (english,77,2)



      i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest







      scala apache-spark rdd






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 20 '18 at 6:47









      mrsrinivas

      15.7k77193




      15.7k77193










      asked Nov 20 '18 at 6:21









      devDdevD

      63




      63
























          2 Answers
          2






          active

          oldest

          votes


















          1














          Spark RDD functions(so called transformations) like groupByKey flatMap and Scala List function like sorted should helps in achieving it.



          val rdd = spark.sparkContext.parallelize(
          Seq(("maths",60),
          ("english",65),
          ("english",77),
          ("maths",23),
          ("maths",50)))

          val result = rdd.groupByKey().flatMap(group => {

          group._2.toList
          .sorted.toList // sort marks
          .zipWithIndex // add the position/rank
          .map {

          case(marks, index) => (group._1, marks, index + 1)
          }
          })

          result.collect

          // Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))


          Databricks notebook






          share|improve this answer


























          • wow, thanks a ton mr srinivas.....

            – devD
            Nov 20 '18 at 15:48











          • @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

            – mrsrinivas
            Nov 21 '18 at 4:18



















          0














          Another rdd solution:



          val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
          val rdd1 = df.rdd
          rdd1.groupBy( x=> x(0))
          .map( x=>
          {
          val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
          (x._1,p)
          }
          )
          .flatMap( x => x._2.map((x._1,_)))
          .collect.foreach(println)


          Results:



          (english,(65,1))
          (english,(77,2))
          (maths,(23,1))
          (maths,(50,2))
          (maths,(60,3))





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387334%2fsort-and-rank-in-spark-rdd-in-one-file%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            Spark RDD functions(so called transformations) like groupByKey flatMap and Scala List function like sorted should helps in achieving it.



            val rdd = spark.sparkContext.parallelize(
            Seq(("maths",60),
            ("english",65),
            ("english",77),
            ("maths",23),
            ("maths",50)))

            val result = rdd.groupByKey().flatMap(group => {

            group._2.toList
            .sorted.toList // sort marks
            .zipWithIndex // add the position/rank
            .map {

            case(marks, index) => (group._1, marks, index + 1)
            }
            })

            result.collect

            // Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))


            Databricks notebook






            share|improve this answer


























            • wow, thanks a ton mr srinivas.....

              – devD
              Nov 20 '18 at 15:48











            • @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

              – mrsrinivas
              Nov 21 '18 at 4:18
















            1














            Spark RDD functions(so called transformations) like groupByKey flatMap and Scala List function like sorted should helps in achieving it.



            val rdd = spark.sparkContext.parallelize(
            Seq(("maths",60),
            ("english",65),
            ("english",77),
            ("maths",23),
            ("maths",50)))

            val result = rdd.groupByKey().flatMap(group => {

            group._2.toList
            .sorted.toList // sort marks
            .zipWithIndex // add the position/rank
            .map {

            case(marks, index) => (group._1, marks, index + 1)
            }
            })

            result.collect

            // Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))


            Databricks notebook






            share|improve this answer


























            • wow, thanks a ton mr srinivas.....

              – devD
              Nov 20 '18 at 15:48











            • @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

              – mrsrinivas
              Nov 21 '18 at 4:18














            1












            1








            1







            Spark RDD functions(so called transformations) like groupByKey flatMap and Scala List function like sorted should helps in achieving it.



            val rdd = spark.sparkContext.parallelize(
            Seq(("maths",60),
            ("english",65),
            ("english",77),
            ("maths",23),
            ("maths",50)))

            val result = rdd.groupByKey().flatMap(group => {

            group._2.toList
            .sorted.toList // sort marks
            .zipWithIndex // add the position/rank
            .map {

            case(marks, index) => (group._1, marks, index + 1)
            }
            })

            result.collect

            // Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))


            Databricks notebook






            share|improve this answer















            Spark RDD functions(so called transformations) like groupByKey flatMap and Scala List function like sorted should helps in achieving it.



            val rdd = spark.sparkContext.parallelize(
            Seq(("maths",60),
            ("english",65),
            ("english",77),
            ("maths",23),
            ("maths",50)))

            val result = rdd.groupByKey().flatMap(group => {

            group._2.toList
            .sorted.toList // sort marks
            .zipWithIndex // add the position/rank
            .map {

            case(marks, index) => (group._1, marks, index + 1)
            }
            })

            result.collect

            // Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))


            Databricks notebook







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Nov 20 '18 at 6:55

























            answered Nov 20 '18 at 6:46









            mrsrinivasmrsrinivas

            15.7k77193




            15.7k77193













            • wow, thanks a ton mr srinivas.....

              – devD
              Nov 20 '18 at 15:48











            • @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

              – mrsrinivas
              Nov 21 '18 at 4:18



















            • wow, thanks a ton mr srinivas.....

              – devD
              Nov 20 '18 at 15:48











            • @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

              – mrsrinivas
              Nov 21 '18 at 4:18

















            wow, thanks a ton mr srinivas.....

            – devD
            Nov 20 '18 at 15:48





            wow, thanks a ton mr srinivas.....

            – devD
            Nov 20 '18 at 15:48













            @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

            – mrsrinivas
            Nov 21 '18 at 4:18





            @devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.

            – mrsrinivas
            Nov 21 '18 at 4:18













            0














            Another rdd solution:



            val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
            val rdd1 = df.rdd
            rdd1.groupBy( x=> x(0))
            .map( x=>
            {
            val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
            (x._1,p)
            }
            )
            .flatMap( x => x._2.map((x._1,_)))
            .collect.foreach(println)


            Results:



            (english,(65,1))
            (english,(77,2))
            (maths,(23,1))
            (maths,(50,2))
            (maths,(60,3))





            share|improve this answer




























              0














              Another rdd solution:



              val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
              val rdd1 = df.rdd
              rdd1.groupBy( x=> x(0))
              .map( x=>
              {
              val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
              (x._1,p)
              }
              )
              .flatMap( x => x._2.map((x._1,_)))
              .collect.foreach(println)


              Results:



              (english,(65,1))
              (english,(77,2))
              (maths,(23,1))
              (maths,(50,2))
              (maths,(60,3))





              share|improve this answer


























                0












                0








                0







                Another rdd solution:



                val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
                val rdd1 = df.rdd
                rdd1.groupBy( x=> x(0))
                .map( x=>
                {
                val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
                (x._1,p)
                }
                )
                .flatMap( x => x._2.map((x._1,_)))
                .collect.foreach(println)


                Results:



                (english,(65,1))
                (english,(77,2))
                (maths,(23,1))
                (maths,(50,2))
                (maths,(60,3))





                share|improve this answer













                Another rdd solution:



                val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
                val rdd1 = df.rdd
                rdd1.groupBy( x=> x(0))
                .map( x=>
                {
                val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
                (x._1,p)
                }
                )
                .flatMap( x => x._2.map((x._1,_)))
                .collect.foreach(println)


                Results:



                (english,(65,1))
                (english,(77,2))
                (maths,(23,1))
                (maths,(50,2))
                (maths,(60,3))






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 20 '18 at 12:19









                stack0114106stack0114106

                3,4162418




                3,4162418






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387334%2fsort-and-rank-in-spark-rdd-in-one-file%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents