sort and rank in spark RDD in one file
I have an spark RDD as below
(maths,60)
(english,65)
(english,77)
(maths,23)
(maths,50)
I need to sort and rank the given RDD in one as below
(maths,23,1)
(maths,50,2)
(maths,50,3)
(english,65,1)
(english,77,2)
i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest
scala apache-spark rdd
add a comment |
I have an spark RDD as below
(maths,60)
(english,65)
(english,77)
(maths,23)
(maths,50)
I need to sort and rank the given RDD in one as below
(maths,23,1)
(maths,50,2)
(maths,50,3)
(english,65,1)
(english,77,2)
i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest
scala apache-spark rdd
add a comment |
I have an spark RDD as below
(maths,60)
(english,65)
(english,77)
(maths,23)
(maths,50)
I need to sort and rank the given RDD in one as below
(maths,23,1)
(maths,50,2)
(maths,50,3)
(english,65,1)
(english,77,2)
i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest
scala apache-spark rdd
I have an spark RDD as below
(maths,60)
(english,65)
(english,77)
(maths,23)
(maths,50)
I need to sort and rank the given RDD in one as below
(maths,23,1)
(maths,50,2)
(maths,50,3)
(english,65,1)
(english,77,2)
i know this can be done easily using Data Frame, but i need Spark rdd code to get the solution, please suggest
scala apache-spark rdd
scala apache-spark rdd
edited Nov 20 '18 at 6:47
mrsrinivas
15.7k77193
15.7k77193
asked Nov 20 '18 at 6:21
devDdevD
63
63
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Spark RDD
functions(so called transformations) like groupByKey
flatMap
and Scala List
function like sorted
should helps in achieving it.
val rdd = spark.sparkContext.parallelize(
Seq(("maths",60),
("english",65),
("english",77),
("maths",23),
("maths",50)))
val result = rdd.groupByKey().flatMap(group => {
group._2.toList
.sorted.toList // sort marks
.zipWithIndex // add the position/rank
.map {
case(marks, index) => (group._1, marks, index + 1)
}
})
result.collect
// Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))
Databricks notebook
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
add a comment |
Another rdd solution:
val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
val rdd1 = df.rdd
rdd1.groupBy( x=> x(0))
.map( x=>
{
val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
(x._1,p)
}
)
.flatMap( x => x._2.map((x._1,_)))
.collect.foreach(println)
Results:
(english,(65,1))
(english,(77,2))
(maths,(23,1))
(maths,(50,2))
(maths,(60,3))
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387334%2fsort-and-rank-in-spark-rdd-in-one-file%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Spark RDD
functions(so called transformations) like groupByKey
flatMap
and Scala List
function like sorted
should helps in achieving it.
val rdd = spark.sparkContext.parallelize(
Seq(("maths",60),
("english",65),
("english",77),
("maths",23),
("maths",50)))
val result = rdd.groupByKey().flatMap(group => {
group._2.toList
.sorted.toList // sort marks
.zipWithIndex // add the position/rank
.map {
case(marks, index) => (group._1, marks, index + 1)
}
})
result.collect
// Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))
Databricks notebook
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
add a comment |
Spark RDD
functions(so called transformations) like groupByKey
flatMap
and Scala List
function like sorted
should helps in achieving it.
val rdd = spark.sparkContext.parallelize(
Seq(("maths",60),
("english",65),
("english",77),
("maths",23),
("maths",50)))
val result = rdd.groupByKey().flatMap(group => {
group._2.toList
.sorted.toList // sort marks
.zipWithIndex // add the position/rank
.map {
case(marks, index) => (group._1, marks, index + 1)
}
})
result.collect
// Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))
Databricks notebook
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
add a comment |
Spark RDD
functions(so called transformations) like groupByKey
flatMap
and Scala List
function like sorted
should helps in achieving it.
val rdd = spark.sparkContext.parallelize(
Seq(("maths",60),
("english",65),
("english",77),
("maths",23),
("maths",50)))
val result = rdd.groupByKey().flatMap(group => {
group._2.toList
.sorted.toList // sort marks
.zipWithIndex // add the position/rank
.map {
case(marks, index) => (group._1, marks, index + 1)
}
})
result.collect
// Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))
Databricks notebook
Spark RDD
functions(so called transformations) like groupByKey
flatMap
and Scala List
function like sorted
should helps in achieving it.
val rdd = spark.sparkContext.parallelize(
Seq(("maths",60),
("english",65),
("english",77),
("maths",23),
("maths",50)))
val result = rdd.groupByKey().flatMap(group => {
group._2.toList
.sorted.toList // sort marks
.zipWithIndex // add the position/rank
.map {
case(marks, index) => (group._1, marks, index + 1)
}
})
result.collect
// Array((english,65,1), (english,77,2), (maths,23,1), (maths,50,2), (maths,60,3))
Databricks notebook
edited Nov 20 '18 at 6:55
answered Nov 20 '18 at 6:46
mrsrinivasmrsrinivas
15.7k77193
15.7k77193
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
add a comment |
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
wow, thanks a ton mr srinivas.....
– devD
Nov 20 '18 at 15:48
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
@devD: Glad that helps!! consider marking the answer as accepted so that community can know the question has been answered.
– mrsrinivas
Nov 21 '18 at 4:18
add a comment |
Another rdd solution:
val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
val rdd1 = df.rdd
rdd1.groupBy( x=> x(0))
.map( x=>
{
val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
(x._1,p)
}
)
.flatMap( x => x._2.map((x._1,_)))
.collect.foreach(println)
Results:
(english,(65,1))
(english,(77,2))
(maths,(23,1))
(maths,(50,2))
(maths,(60,3))
add a comment |
Another rdd solution:
val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
val rdd1 = df.rdd
rdd1.groupBy( x=> x(0))
.map( x=>
{
val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
(x._1,p)
}
)
.flatMap( x => x._2.map((x._1,_)))
.collect.foreach(println)
Results:
(english,(65,1))
(english,(77,2))
(maths,(23,1))
(maths,(50,2))
(maths,(60,3))
add a comment |
Another rdd solution:
val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
val rdd1 = df.rdd
rdd1.groupBy( x=> x(0))
.map( x=>
{
val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
(x._1,p)
}
)
.flatMap( x => x._2.map((x._1,_)))
.collect.foreach(println)
Results:
(english,(65,1))
(english,(77,2))
(maths,(23,1))
(maths,(50,2))
(maths,(60,3))
Another rdd solution:
val df = Seq(("maths",60),("english",65),("english",77),("maths",23),("maths",50)).toDF("subject","marks")
val rdd1 = df.rdd
rdd1.groupBy( x=> x(0))
.map( x=>
{
val p = x._2.toList.map(a=>a(1)).map(_.toString.toInt).sortWith((a1,a2)=> a1 < a2 ).zipWithIndex.map(b=>(b._1,b._2+1))
(x._1,p)
}
)
.flatMap( x => x._2.map((x._1,_)))
.collect.foreach(println)
Results:
(english,(65,1))
(english,(77,2))
(maths,(23,1))
(maths,(50,2))
(maths,(60,3))
answered Nov 20 '18 at 12:19
stack0114106stack0114106
3,4162418
3,4162418
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387334%2fsort-and-rank-in-spark-rdd-in-one-file%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown