Evaluate $ lim_{xto 0}|frac{5^x - 5^{-x}}{5^x-1}| $ without using L'Hospital's rule.
$begingroup$
$$
lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
$$
I know the limit is equal to 2. But I am not allowed to use L'Hospital.
How can I evaluate the limit without L'Hospital?
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
$$
lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
$$
I know the limit is equal to 2. But I am not allowed to use L'Hospital.
How can I evaluate the limit without L'Hospital?
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
$$
lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
$$
I know the limit is equal to 2. But I am not allowed to use L'Hospital.
How can I evaluate the limit without L'Hospital?
calculus limits limits-without-lhopital
$endgroup$
$$
lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
$$
I know the limit is equal to 2. But I am not allowed to use L'Hospital.
How can I evaluate the limit without L'Hospital?
calculus limits limits-without-lhopital
calculus limits limits-without-lhopital
edited Nov 30 '18 at 20:57
Martin Sleziak
44.8k10118272
44.8k10118272
asked Nov 30 '18 at 12:25
nofnof
32
32
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint:
$$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$
$endgroup$
add a comment |
$begingroup$
Set $y= 5^x$ and consider $ylongrightarrow 1$
$$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$
$endgroup$
add a comment |
$begingroup$
HINT
For positive $x$ we have:
$frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
As $xrightarrow 0$ this approaches to $1+1=2$.
$endgroup$
add a comment |
$begingroup$
Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$
$lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020035%2fevaluate-lim-x-to-0-frac5x-5-x5x-1-without-using-lhospital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$
$endgroup$
Hint:
$$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$
answered Nov 30 '18 at 12:33
KM101KM101
5,9251524
5,9251524
add a comment |
add a comment |
$begingroup$
Set $y= 5^x$ and consider $ylongrightarrow 1$
$$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$
$endgroup$
add a comment |
$begingroup$
Set $y= 5^x$ and consider $ylongrightarrow 1$
$$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$
$endgroup$
add a comment |
$begingroup$
Set $y= 5^x$ and consider $ylongrightarrow 1$
$$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$
$endgroup$
Set $y= 5^x$ and consider $ylongrightarrow 1$
$$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$
answered Nov 30 '18 at 12:32
trancelocationtrancelocation
11.2k1724
11.2k1724
add a comment |
add a comment |
$begingroup$
HINT
For positive $x$ we have:
$frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
As $xrightarrow 0$ this approaches to $1+1=2$.
$endgroup$
add a comment |
$begingroup$
HINT
For positive $x$ we have:
$frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
As $xrightarrow 0$ this approaches to $1+1=2$.
$endgroup$
add a comment |
$begingroup$
HINT
For positive $x$ we have:
$frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
As $xrightarrow 0$ this approaches to $1+1=2$.
$endgroup$
HINT
For positive $x$ we have:
$frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
As $xrightarrow 0$ this approaches to $1+1=2$.
answered Nov 30 '18 at 12:52
A. PongráczA. Pongrácz
5,9531929
5,9531929
add a comment |
add a comment |
$begingroup$
Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$
$lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $
$endgroup$
add a comment |
$begingroup$
Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$
$lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $
$endgroup$
add a comment |
$begingroup$
Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$
$lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $
$endgroup$
Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$
$lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $
answered Nov 30 '18 at 12:36
Shubham JohriShubham Johri
5,172717
5,172717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020035%2fevaluate-lim-x-to-0-frac5x-5-x5x-1-without-using-lhospital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown