Evaluate $ lim_{xto 0}|frac{5^x - 5^{-x}}{5^x-1}| $ without using L'Hospital's rule.












0












$begingroup$


$$
lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
$$



I know the limit is equal to 2. But I am not allowed to use L'Hospital.
How can I evaluate the limit without L'Hospital?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    $$
    lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
    $$



    I know the limit is equal to 2. But I am not allowed to use L'Hospital.
    How can I evaluate the limit without L'Hospital?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      $$
      lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
      $$



      I know the limit is equal to 2. But I am not allowed to use L'Hospital.
      How can I evaluate the limit without L'Hospital?










      share|cite|improve this question











      $endgroup$




      $$
      lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|
      $$



      I know the limit is equal to 2. But I am not allowed to use L'Hospital.
      How can I evaluate the limit without L'Hospital?







      calculus limits limits-without-lhopital






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 30 '18 at 20:57









      Martin Sleziak

      44.8k10118272




      44.8k10118272










      asked Nov 30 '18 at 12:25









      nofnof

      32




      32






















          4 Answers
          4






          active

          oldest

          votes


















          8












          $begingroup$

          Hint:



          $$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Set $y= 5^x$ and consider $ylongrightarrow 1$
            $$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$






            share|cite|improve this answer









            $endgroup$





















              2












              $begingroup$

              HINT



              For positive $x$ we have:
              $frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
              As $xrightarrow 0$ this approaches to $1+1=2$.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$



                $lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $






                share|cite|improve this answer









                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020035%2fevaluate-lim-x-to-0-frac5x-5-x5x-1-without-using-lhospital%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  8












                  $begingroup$

                  Hint:



                  $$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$






                  share|cite|improve this answer









                  $endgroup$


















                    8












                    $begingroup$

                    Hint:



                    $$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$






                    share|cite|improve this answer









                    $endgroup$
















                      8












                      8








                      8





                      $begingroup$

                      Hint:



                      $$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$






                      share|cite|improve this answer









                      $endgroup$



                      Hint:



                      $$lim_{x to 0}biggvertfrac{5^x-5^{-x}}{5^x-1}biggvert = lim_{x to 0}biggvertfrac{5^{2x}-1}{5^{2x}-5^x}biggvert = lim_{x to 0}biggvertfrac{(5^{x}-1)(5^x+1)}{5^{x}(5^x-1)}biggvert$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 30 '18 at 12:33









                      KM101KM101

                      5,9251524




                      5,9251524























                          2












                          $begingroup$

                          Set $y= 5^x$ and consider $ylongrightarrow 1$
                          $$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            Set $y= 5^x$ and consider $ylongrightarrow 1$
                            $$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              Set $y= 5^x$ and consider $ylongrightarrow 1$
                              $$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$






                              share|cite|improve this answer









                              $endgroup$



                              Set $y= 5^x$ and consider $ylongrightarrow 1$
                              $$left|frac{5^x - 5^{-x}}{5^x-1}right| = left|frac{y-frac{1}{y}}{y-1}right| = left|frac{y^2-1}{y(y-1)}right| = left|frac{y+1}{y}right| stackrel{y to 1}{longrightarrow} 2$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Nov 30 '18 at 12:32









                              trancelocationtrancelocation

                              11.2k1724




                              11.2k1724























                                  2












                                  $begingroup$

                                  HINT



                                  For positive $x$ we have:
                                  $frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
                                  As $xrightarrow 0$ this approaches to $1+1=2$.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    2












                                    $begingroup$

                                    HINT



                                    For positive $x$ we have:
                                    $frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
                                    As $xrightarrow 0$ this approaches to $1+1=2$.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      2












                                      2








                                      2





                                      $begingroup$

                                      HINT



                                      For positive $x$ we have:
                                      $frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
                                      As $xrightarrow 0$ this approaches to $1+1=2$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      HINT



                                      For positive $x$ we have:
                                      $frac{5^x-5^{-x}}{5^x-1}= frac{(5^x-1)+(1-5^{-x})}{5^x-1}= 1+5^{-x}$.
                                      As $xrightarrow 0$ this approaches to $1+1=2$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Nov 30 '18 at 12:52









                                      A. PongráczA. Pongrácz

                                      5,9531929




                                      5,9531929























                                          0












                                          $begingroup$

                                          Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$



                                          $lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$



                                            $lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$



                                              $lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $






                                              share|cite|improve this answer









                                              $endgroup$



                                              Alternative approach: Recall that $lim_{xto0}frac{a^x-1}{x}=ln a$



                                              $lim_{xto 0}left|frac{5^x - 5^{-x}}{5^x-1}right|=lim_{xto 0}left|frac{5^{2x}-1 }{5^x(5^x-1)}right|=lim_{xto 0} |frac{5^{2x}-1 }{2x}|cdotfrac{2}{5^x}cdot|frac{x}{5^x-1}|=frac{2ln5}{ln5}=2 $







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Nov 30 '18 at 12:36









                                              Shubham JohriShubham Johri

                                              5,172717




                                              5,172717






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020035%2fevaluate-lim-x-to-0-frac5x-5-x5x-1-without-using-lhospital%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  How to change which sound is reproduced for terminal bell?

                                                  Can I use Tabulator js library in my java Spring + Thymeleaf project?

                                                  Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents