Proving that an Epsilon-Delta Proof is not true
$begingroup$
We write $lim_{x to a} f(x)=L$ if the following is true
$(forallepsilon>0)(existsdelta>0)(forall x)(0<|x-a|<deltarightarrow|f(x)-L|<epsilon)$
Let $f:Bbb{R}rightarrowBbb{R}$ be given by
$f(x)=
begin{cases}
0, & text{if $x<0$} \
1/2, & text{if $=0$} \
1, & text{if $x>0$}
end{cases}$
We will show that it is not the case that $lim_{x to 0} f(x)=1/2$
(a) Write the negation of $lim_{x to 0} f(x)=1/2$ using the epsilon-delta definition given above
- I attempted to find the negation of this and this what I got after some calculations
$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|geepsilon)$
(b) Prove the assertion that you found in part (a)
Hint: $epsilon=1/4$
- This is where I am stuck. How would I prove the epsilon-delta expression that I found in part (a). Any kind of help would be appreciated.
proof-verification proof-explanation epsilon-delta
$endgroup$
add a comment |
$begingroup$
We write $lim_{x to a} f(x)=L$ if the following is true
$(forallepsilon>0)(existsdelta>0)(forall x)(0<|x-a|<deltarightarrow|f(x)-L|<epsilon)$
Let $f:Bbb{R}rightarrowBbb{R}$ be given by
$f(x)=
begin{cases}
0, & text{if $x<0$} \
1/2, & text{if $=0$} \
1, & text{if $x>0$}
end{cases}$
We will show that it is not the case that $lim_{x to 0} f(x)=1/2$
(a) Write the negation of $lim_{x to 0} f(x)=1/2$ using the epsilon-delta definition given above
- I attempted to find the negation of this and this what I got after some calculations
$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|geepsilon)$
(b) Prove the assertion that you found in part (a)
Hint: $epsilon=1/4$
- This is where I am stuck. How would I prove the epsilon-delta expression that I found in part (a). Any kind of help would be appreciated.
proof-verification proof-explanation epsilon-delta
$endgroup$
$begingroup$
Your negated formula is not correct: you should have $|f(x)-1/2|geqepsilon$ in the final bit.
$endgroup$
– Leo163
Nov 30 '18 at 12:20
add a comment |
$begingroup$
We write $lim_{x to a} f(x)=L$ if the following is true
$(forallepsilon>0)(existsdelta>0)(forall x)(0<|x-a|<deltarightarrow|f(x)-L|<epsilon)$
Let $f:Bbb{R}rightarrowBbb{R}$ be given by
$f(x)=
begin{cases}
0, & text{if $x<0$} \
1/2, & text{if $=0$} \
1, & text{if $x>0$}
end{cases}$
We will show that it is not the case that $lim_{x to 0} f(x)=1/2$
(a) Write the negation of $lim_{x to 0} f(x)=1/2$ using the epsilon-delta definition given above
- I attempted to find the negation of this and this what I got after some calculations
$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|geepsilon)$
(b) Prove the assertion that you found in part (a)
Hint: $epsilon=1/4$
- This is where I am stuck. How would I prove the epsilon-delta expression that I found in part (a). Any kind of help would be appreciated.
proof-verification proof-explanation epsilon-delta
$endgroup$
We write $lim_{x to a} f(x)=L$ if the following is true
$(forallepsilon>0)(existsdelta>0)(forall x)(0<|x-a|<deltarightarrow|f(x)-L|<epsilon)$
Let $f:Bbb{R}rightarrowBbb{R}$ be given by
$f(x)=
begin{cases}
0, & text{if $x<0$} \
1/2, & text{if $=0$} \
1, & text{if $x>0$}
end{cases}$
We will show that it is not the case that $lim_{x to 0} f(x)=1/2$
(a) Write the negation of $lim_{x to 0} f(x)=1/2$ using the epsilon-delta definition given above
- I attempted to find the negation of this and this what I got after some calculations
$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|geepsilon)$
(b) Prove the assertion that you found in part (a)
Hint: $epsilon=1/4$
- This is where I am stuck. How would I prove the epsilon-delta expression that I found in part (a). Any kind of help would be appreciated.
proof-verification proof-explanation epsilon-delta
proof-verification proof-explanation epsilon-delta
edited Nov 30 '18 at 12:25
Viserom
asked Nov 30 '18 at 12:14
ViseromViserom
123
123
$begingroup$
Your negated formula is not correct: you should have $|f(x)-1/2|geqepsilon$ in the final bit.
$endgroup$
– Leo163
Nov 30 '18 at 12:20
add a comment |
$begingroup$
Your negated formula is not correct: you should have $|f(x)-1/2|geqepsilon$ in the final bit.
$endgroup$
– Leo163
Nov 30 '18 at 12:20
$begingroup$
Your negated formula is not correct: you should have $|f(x)-1/2|geqepsilon$ in the final bit.
$endgroup$
– Leo163
Nov 30 '18 at 12:20
$begingroup$
Your negated formula is not correct: you should have $|f(x)-1/2|geqepsilon$ in the final bit.
$endgroup$
– Leo163
Nov 30 '18 at 12:20
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|color{blue}geepsilon)$$
Follow the hint,
Let $epsilon = frac14$, then $forall delta >0$, let $x= frac{delta}2$, then $$f(x)-frac12=1-frac12 ge epsilon$$
$endgroup$
add a comment |
$begingroup$
Given $delta>0$, we look for $x$ such that
$$0<|x|<delta $$
and
$$|f(x)-frac 12|ge frac 14.$$
$$iff$$
$$f(x)ge frac 34 text{ or } f(x)le frac 14$$
so we can take $x_0=-frac{delta}{2}$
with $f(x_0)=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020025%2fproving-that-an-epsilon-delta-proof-is-not-true%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|color{blue}geepsilon)$$
Follow the hint,
Let $epsilon = frac14$, then $forall delta >0$, let $x= frac{delta}2$, then $$f(x)-frac12=1-frac12 ge epsilon$$
$endgroup$
add a comment |
$begingroup$
$$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|color{blue}geepsilon)$$
Follow the hint,
Let $epsilon = frac14$, then $forall delta >0$, let $x= frac{delta}2$, then $$f(x)-frac12=1-frac12 ge epsilon$$
$endgroup$
add a comment |
$begingroup$
$$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|color{blue}geepsilon)$$
Follow the hint,
Let $epsilon = frac14$, then $forall delta >0$, let $x= frac{delta}2$, then $$f(x)-frac12=1-frac12 ge epsilon$$
$endgroup$
$$(existsepsilon>0)(foralldelta>0)(exists x)(0<|x-0|<deltaland|f(x)-1/2|color{blue}geepsilon)$$
Follow the hint,
Let $epsilon = frac14$, then $forall delta >0$, let $x= frac{delta}2$, then $$f(x)-frac12=1-frac12 ge epsilon$$
answered Nov 30 '18 at 12:20
Siong Thye GohSiong Thye Goh
101k1466118
101k1466118
add a comment |
add a comment |
$begingroup$
Given $delta>0$, we look for $x$ such that
$$0<|x|<delta $$
and
$$|f(x)-frac 12|ge frac 14.$$
$$iff$$
$$f(x)ge frac 34 text{ or } f(x)le frac 14$$
so we can take $x_0=-frac{delta}{2}$
with $f(x_0)=0$.
$endgroup$
add a comment |
$begingroup$
Given $delta>0$, we look for $x$ such that
$$0<|x|<delta $$
and
$$|f(x)-frac 12|ge frac 14.$$
$$iff$$
$$f(x)ge frac 34 text{ or } f(x)le frac 14$$
so we can take $x_0=-frac{delta}{2}$
with $f(x_0)=0$.
$endgroup$
add a comment |
$begingroup$
Given $delta>0$, we look for $x$ such that
$$0<|x|<delta $$
and
$$|f(x)-frac 12|ge frac 14.$$
$$iff$$
$$f(x)ge frac 34 text{ or } f(x)le frac 14$$
so we can take $x_0=-frac{delta}{2}$
with $f(x_0)=0$.
$endgroup$
Given $delta>0$, we look for $x$ such that
$$0<|x|<delta $$
and
$$|f(x)-frac 12|ge frac 14.$$
$$iff$$
$$f(x)ge frac 34 text{ or } f(x)le frac 14$$
so we can take $x_0=-frac{delta}{2}$
with $f(x_0)=0$.
answered Nov 30 '18 at 13:18
hamam_Abdallahhamam_Abdallah
38.1k21634
38.1k21634
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020025%2fproving-that-an-epsilon-delta-proof-is-not-true%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your negated formula is not correct: you should have $|f(x)-1/2|geqepsilon$ in the final bit.
$endgroup$
– Leo163
Nov 30 '18 at 12:20