Integrate $sqrt{(1-cos(x))^3}$
$begingroup$
I need help solving the following integration problem:
$$int sqrt{(1-cos(x))^3} dx$$
I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.
integration
$endgroup$
add a comment |
$begingroup$
I need help solving the following integration problem:
$$int sqrt{(1-cos(x))^3} dx$$
I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.
integration
$endgroup$
add a comment |
$begingroup$
I need help solving the following integration problem:
$$int sqrt{(1-cos(x))^3} dx$$
I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.
integration
$endgroup$
I need help solving the following integration problem:
$$int sqrt{(1-cos(x))^3} dx$$
I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.
integration
integration
edited Nov 30 '18 at 11:50
KM101
5,9251524
5,9251524
asked Nov 30 '18 at 11:45
SamSam
1887
1887
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:
$$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
$$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$
Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.
$endgroup$
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
3
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
1
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
|
show 4 more comments
$begingroup$
$$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
You will get this result by applying these substitutions in sequence
$$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
$$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020002%2fintegrate-sqrt1-cosx3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:
$$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
$$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$
Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.
$endgroup$
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
3
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
1
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
|
show 4 more comments
$begingroup$
Hint:
Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:
$$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
$$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$
Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.
$endgroup$
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
3
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
1
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
|
show 4 more comments
$begingroup$
Hint:
Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:
$$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
$$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$
Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.
$endgroup$
Hint:
Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:
$$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
$$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$
Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.
edited Nov 30 '18 at 12:04
answered Nov 30 '18 at 11:49
Toby MakToby Mak
3,49811128
3,49811128
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
3
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
1
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
|
show 4 more comments
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
3
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
1
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
$begingroup$
Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
$endgroup$
– Sam
Nov 30 '18 at 11:53
3
3
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Because $2cdotfrac{3}{2} = 3$.
$endgroup$
– KM101
Nov 30 '18 at 11:55
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
$begingroup$
Can you explain how you got from $cos(2theta)$ to $1-costheta$?
$endgroup$
– Sam
Nov 30 '18 at 11:59
1
1
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
@Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
$endgroup$
– Toby Mak
Nov 30 '18 at 12:01
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
$begingroup$
It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
$endgroup$
– Bernard
Nov 30 '18 at 12:03
|
show 4 more comments
$begingroup$
$$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
You will get this result by applying these substitutions in sequence
$$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
$$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$
$endgroup$
add a comment |
$begingroup$
$$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
You will get this result by applying these substitutions in sequence
$$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
$$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$
$endgroup$
add a comment |
$begingroup$
$$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
You will get this result by applying these substitutions in sequence
$$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
$$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$
$endgroup$
$$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
You will get this result by applying these substitutions in sequence
$$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
$$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$
answered Nov 30 '18 at 11:57
AmarildoAmarildo
1,769816
1,769816
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020002%2fintegrate-sqrt1-cosx3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown