Integrate $sqrt{(1-cos(x))^3}$












0












$begingroup$


I need help solving the following integration problem:
$$int sqrt{(1-cos(x))^3} dx$$



I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I need help solving the following integration problem:
    $$int sqrt{(1-cos(x))^3} dx$$



    I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      0



      $begingroup$


      I need help solving the following integration problem:
      $$int sqrt{(1-cos(x))^3} dx$$



      I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.










      share|cite|improve this question











      $endgroup$




      I need help solving the following integration problem:
      $$int sqrt{(1-cos(x))^3} dx$$



      I know I am supposed to use a trig identity so that I can do a u-sub, but don't know which one or how.







      integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 30 '18 at 11:50









      KM101

      5,9251524




      5,9251524










      asked Nov 30 '18 at 11:45









      SamSam

      1887




      1887






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Hint:



          Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:



          $$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
          $$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$



          Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
            $endgroup$
            – Sam
            Nov 30 '18 at 11:53








          • 3




            $begingroup$
            Because $2cdotfrac{3}{2} = 3$.
            $endgroup$
            – KM101
            Nov 30 '18 at 11:55










          • $begingroup$
            Can you explain how you got from $cos(2theta)$ to $1-costheta$?
            $endgroup$
            – Sam
            Nov 30 '18 at 11:59








          • 1




            $begingroup$
            @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
            $endgroup$
            – Toby Mak
            Nov 30 '18 at 12:01










          • $begingroup$
            It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
            $endgroup$
            – Bernard
            Nov 30 '18 at 12:03





















          1












          $begingroup$

          $$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
          You will get this result by applying these substitutions in sequence
          $$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
          $$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020002%2fintegrate-sqrt1-cosx3%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            Hint:



            Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:



            $$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
            $$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$



            Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:53








            • 3




              $begingroup$
              Because $2cdotfrac{3}{2} = 3$.
              $endgroup$
              – KM101
              Nov 30 '18 at 11:55










            • $begingroup$
              Can you explain how you got from $cos(2theta)$ to $1-costheta$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:59








            • 1




              $begingroup$
              @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
              $endgroup$
              – Toby Mak
              Nov 30 '18 at 12:01










            • $begingroup$
              It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
              $endgroup$
              – Bernard
              Nov 30 '18 at 12:03


















            5












            $begingroup$

            Hint:



            Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:



            $$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
            $$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$



            Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:53








            • 3




              $begingroup$
              Because $2cdotfrac{3}{2} = 3$.
              $endgroup$
              – KM101
              Nov 30 '18 at 11:55










            • $begingroup$
              Can you explain how you got from $cos(2theta)$ to $1-costheta$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:59








            • 1




              $begingroup$
              @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
              $endgroup$
              – Toby Mak
              Nov 30 '18 at 12:01










            • $begingroup$
              It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
              $endgroup$
              – Bernard
              Nov 30 '18 at 12:03
















            5












            5








            5





            $begingroup$

            Hint:



            Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:



            $$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
            $$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$



            Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.






            share|cite|improve this answer











            $endgroup$



            Hint:



            Since $cos(2x) = 1 - 2 sin^2(x)$, $1-cos x = 2 sin^2(frac{x}{2})$:



            $$int 2 sqrt{2} bigg(sin^2left(frac{x}{2}right)bigg)^{3/2} dx$$
            $$= 2sqrt{2} int left| sin^3left(frac{x}{2}right) right| dx$$



            Now from $sin(3x) = 3 sin x - 4 sin^3 x$, $4 sin^3(x) = 3 sin(x) - sin(3x)$, so you can use the identity $sin^3(x) = frac{3}{4}sin(x) - frac{1}{4}sin(3x)$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 30 '18 at 12:04

























            answered Nov 30 '18 at 11:49









            Toby MakToby Mak

            3,49811128




            3,49811128












            • $begingroup$
              Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:53








            • 3




              $begingroup$
              Because $2cdotfrac{3}{2} = 3$.
              $endgroup$
              – KM101
              Nov 30 '18 at 11:55










            • $begingroup$
              Can you explain how you got from $cos(2theta)$ to $1-costheta$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:59








            • 1




              $begingroup$
              @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
              $endgroup$
              – Toby Mak
              Nov 30 '18 at 12:01










            • $begingroup$
              It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
              $endgroup$
              – Bernard
              Nov 30 '18 at 12:03




















            • $begingroup$
              Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:53








            • 3




              $begingroup$
              Because $2cdotfrac{3}{2} = 3$.
              $endgroup$
              – KM101
              Nov 30 '18 at 11:55










            • $begingroup$
              Can you explain how you got from $cos(2theta)$ to $1-costheta$?
              $endgroup$
              – Sam
              Nov 30 '18 at 11:59








            • 1




              $begingroup$
              @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
              $endgroup$
              – Toby Mak
              Nov 30 '18 at 12:01










            • $begingroup$
              It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
              $endgroup$
              – Bernard
              Nov 30 '18 at 12:03


















            $begingroup$
            Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
            $endgroup$
            – Sam
            Nov 30 '18 at 11:53






            $begingroup$
            Why is the it not $int sin^frac{3}{2}frac{x}{2} dx$?
            $endgroup$
            – Sam
            Nov 30 '18 at 11:53






            3




            3




            $begingroup$
            Because $2cdotfrac{3}{2} = 3$.
            $endgroup$
            – KM101
            Nov 30 '18 at 11:55




            $begingroup$
            Because $2cdotfrac{3}{2} = 3$.
            $endgroup$
            – KM101
            Nov 30 '18 at 11:55












            $begingroup$
            Can you explain how you got from $cos(2theta)$ to $1-costheta$?
            $endgroup$
            – Sam
            Nov 30 '18 at 11:59






            $begingroup$
            Can you explain how you got from $cos(2theta)$ to $1-costheta$?
            $endgroup$
            – Sam
            Nov 30 '18 at 11:59






            1




            1




            $begingroup$
            @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
            $endgroup$
            – Toby Mak
            Nov 30 '18 at 12:01




            $begingroup$
            @Sam Take the negative sign on both sides: $-cos(2x) = -1 + 2 sin^2(x)$. Then add $1$ to both sides; $1 - cos(2x) = 2 sin^2(x)$. Then if $x = frac{u}{2}$, then $1 - cos(u) = 2 sin^2(frac{u}{2})$.
            $endgroup$
            – Toby Mak
            Nov 30 '18 at 12:01












            $begingroup$
            It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
            $endgroup$
            – Bernard
            Nov 30 '18 at 12:03






            $begingroup$
            It should be $;{displaystyleint}Bigl|sin^3bigl(frac x2bigr)Bigr|,mathrm dx$.
            $endgroup$
            – Bernard
            Nov 30 '18 at 12:03













            1












            $begingroup$

            $$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
            You will get this result by applying these substitutions in sequence
            $$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
            $$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              $$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
              You will get this result by applying these substitutions in sequence
              $$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
              $$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                $$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
                You will get this result by applying these substitutions in sequence
                $$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
                $$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$






                share|cite|improve this answer









                $endgroup$



                $$int sqrt{left(1-cos left(xright)right)^3} = 4sqrt{2}int :frac{y^3}{left(1+y^2right)^{frac{5}{2}}}dy=2sqrt{2}int :frac{1}{z^{frac{3}{2}}}-frac{1}{z^{frac{5}{2}}}dz$$
                You will get this result by applying these substitutions in sequence
                $$y=tanleft(frac{x}{2}right)qquadqquad z= 1+y^2$$
                $$int sqrt{left(1-cos left(xright)right)^3}=color{red}{4sqrt{2}left(frac{1}{3sec ^3left(frac{x}{2}right)}-frac{1}{sec left(frac{x}{2}right)}right)+C}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 30 '18 at 11:57









                AmarildoAmarildo

                1,769816




                1,769816






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020002%2fintegrate-sqrt1-cosx3%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents