Solve the Differential equation $left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin...
$begingroup$
Solve the equation
$$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$
My try:
Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$
so have modified the equation as:
$$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$
$$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$
$$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$
any way to proceed here?
algebra-precalculus ordinary-differential-equations derivatives indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Solve the equation
$$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$
My try:
Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$
so have modified the equation as:
$$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$
$$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$
$$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$
any way to proceed here?
algebra-precalculus ordinary-differential-equations derivatives indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Solve the equation
$$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$
My try:
Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$
so have modified the equation as:
$$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$
$$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$
$$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$
any way to proceed here?
algebra-precalculus ordinary-differential-equations derivatives indefinite-integrals
$endgroup$
Solve the equation
$$left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy=0$$
My try:
Letting $e^{sin x}=t$ we have $e^{sin x}cos xdx=dt$
so have modified the equation as:
$$ydt+2tdy-y^3dx-3y^2xdy+2xydx+x^2dy-y^2xdy+x^2dy-4y^2dy=0$$ $implies$
$$ydt+tdy+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$ $implies$
$$d(ty)+tdy-dleft(y^3xright)+dleft(x^2yright)+(x^2-xy^2)dy=4y^2dy$$
any way to proceed here?
algebra-precalculus ordinary-differential-equations derivatives indefinite-integrals
algebra-precalculus ordinary-differential-equations derivatives indefinite-integrals
asked Nov 29 '18 at 8:26
Umesh shankarUmesh shankar
2,68031219
2,68031219
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If you multiply the expression on the left-hand side by $y$, you get the exact differential,
$$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$
So the solution is
$$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018352%2fsolve-the-differential-equation-lefty-e-sin-x-cos-x-y32xy-rightdx-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you multiply the expression on the left-hand side by $y$, you get the exact differential,
$$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$
So the solution is
$$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$
$endgroup$
add a comment |
$begingroup$
If you multiply the expression on the left-hand side by $y$, you get the exact differential,
$$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$
So the solution is
$$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$
$endgroup$
add a comment |
$begingroup$
If you multiply the expression on the left-hand side by $y$, you get the exact differential,
$$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$
So the solution is
$$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$
$endgroup$
If you multiply the expression on the left-hand side by $y$, you get the exact differential,
$$ y times left(left(y e^{sin x}cos x-y^3+2xyright)dx+left(2e^{sin x}-4y^2(x+1)+2x^2right)dy right) =dleft( y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2right).$$
So the solution is
$$ y^2 e^{sin x} - y^4 (x + 1) + x^2 y^2 = {rm constant}.$$
answered Nov 29 '18 at 8:36
Kenny WongKenny Wong
18.7k21439
18.7k21439
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018352%2fsolve-the-differential-equation-lefty-e-sin-x-cos-x-y32xy-rightdx-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown