Create all numbers from 1-100 using 1,3,3,6
$begingroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
EDIT: no factorials, in squareroots 2 is hidden, no combining results of operations, you can use parentheses and start with negative numbers, no rounding and no decimal points. Good Luck
calculation-puzzle formation-of-numbers
$endgroup$
|
show 3 more comments
$begingroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
EDIT: no factorials, in squareroots 2 is hidden, no combining results of operations, you can use parentheses and start with negative numbers, no rounding and no decimal points. Good Luck
calculation-puzzle formation-of-numbers
$endgroup$
4
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
Jan 27 at 23:23
3
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
Jan 28 at 0:25
1
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
Jan 28 at 3:31
|
show 3 more comments
$begingroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
EDIT: no factorials, in squareroots 2 is hidden, no combining results of operations, you can use parentheses and start with negative numbers, no rounding and no decimal points. Good Luck
calculation-puzzle formation-of-numbers
$endgroup$
Create all the numbers from $1$ to $100$ using the numbers $1$,$3$,$3$, and $6$.
- You can only use each number once, except for the $3$, of which you have two.
- You can use addition ($x+y$), subtraction ($x-y$), division ($frac{x}{y}$), multiplication ($xtimes y$), exponentiation ($x^y$) and roots ($sqrt[leftroot{-2}uproot{2}x]{y}$).
- You can combine numbers like $1$ and $3$ to $13$ etc.
- You must use all numbers.
EDIT: no factorials, in squareroots 2 is hidden, no combining results of operations, you can use parentheses and start with negative numbers, no rounding and no decimal points. Good Luck
calculation-puzzle formation-of-numbers
calculation-puzzle formation-of-numbers
edited Jan 28 at 10:19
Michał Uraszewski
asked Jan 27 at 22:00
Michał UraszewskiMichał Uraszewski
6116
6116
4
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
Jan 27 at 23:23
3
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
Jan 28 at 0:25
1
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
Jan 28 at 3:31
|
show 3 more comments
4
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
Jan 27 at 23:23
3
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
Jan 28 at 0:25
1
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
Jan 28 at 3:31
4
4
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
Jan 27 at 22:14
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
Jan 27 at 22:14
1
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
Jan 27 at 22:14
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
Jan 27 at 22:14
1
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
Jan 27 at 23:23
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
Jan 27 at 23:23
3
3
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
Jan 28 at 0:25
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
Jan 28 at 0:25
1
1
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
Jan 28 at 3:31
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
Jan 28 at 3:31
|
show 3 more comments
8 Answers
8
active
oldest
votes
$begingroup$
These get harder with larger numbers, but here are the first 40 (and a couple of the easier ones after that) with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so from now on, only the easier ones)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51 to 60
51: $ $
52: $ $
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ $
58: $ (1+3)^3-6$
59: $ $
60: $ (1+3times3)times6$
61 to 70
61: $ $
62: $ $
63: $ $
64: $ (1+3/3)^6$
65: $ $
66: $ $
67: $ $
68: $ $
69: $ $
70: $ (1+3)^3+6$
71 to 80
71: $ $
72: $ (1+3)times 3 times 6$
73: $ $
74: $ $
75: $ $
76: $ $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81 to 90
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ $
88: $ $
89: $ $
90: $ $
91 to 100
91: $ $
92: $ $
93: $ $
94: $ $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ $
100: $ $
$endgroup$
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
add a comment |
$begingroup$
Here's a solution for most of them. The remaining 21 are impossible.
- Most of them only use simple arithmetic.
- Some of them use exponentiation.
- Some use square roots.
Edit: Using only the binary operators (including digit concatenation), the number of possible combinations is pretty small (arrange three binary operators, then fill in the four numbers in some order) and I double-checked all of them with a computer. Most numbers are solvable with basic arithmetic, some require exponentiation, some require negation or square roots, and the rest are apparently impossible to solve without some extra operation such as rounding.
Accordingly, it is provably impossible to construct the following twenty-one numbers:
41, 44, 46, 47, 56, 68, 69, 74, 77, 79, 83, 85, 86, 89, 90, 91, 92, 95, 97, 98, 100.
The rest can be constructed as follows:
1-25 (complete)
1. (6+1)-(3+3)
2. (3*3)-(6+1)
3. (3*3)-(6*1)
4. 13-(6+3)
5. 36-31
6. 3*(3+1)-6
7. (6+1)+(3-3)
8. (6-3)3-1
9. 6(3-1)-3
10. 3+13-6
11. 6+3+3-1
12. (6+3+3)*1
13. 6+3+3+1
14. (6*3)-(3+1)
15. 13 + (6/3)
16. 13 + (6-3)
17. 33-16
18. (1+3)*3 + 6
19. (6 + 1/3)*3
20. (3*6)+(3-1)
21. (13-6)*3
22. 13+3+6
23. 36-13
24. (6+1)*3 +3
25. 16+(3*3)
26-50 (except 41, 44, 46, 47)
26. 33 - (6+1)
27. 33 - (6*1)
28. 61 - 33
29. 31 - (6/3)
30. (6+3+1)*3
31. 13 + (6*3)
32. 63-31
33. 13*3 - 6
34. 31+(6-3)
35. 6*(3+3) -1
36. (6+3)(3+1)
37. 6(3+3) + 1
38. 33+(6-1)
39. 33+(6*1)
40. 31+3+6
41. round[36 + √(31)]
42. (3+3+1)*6
43. 16 + (3^3)
44. round[(3-√3)^16]
45. (3*13)+6
46. round[3 * (13 + √6)]
47. round[31√3] - 6
48. (3*3 - 1) *6
49. 36+13
50. 63-13
51-75 (except 56, 68, 69, 74)
51. 16*3 + 3
52. 61 - (3*3)
53. (3*3*6)-1
54. 1*3*3*6
55. 61-(3+3)
56. √(3136) (!)
57. (13+6)*3
58. (3+1)^3 - 6
59. 63 - (3+1)
60. (63*1) - 3
61. 61 + (3 - 3)
62. 61 + (3/3)
63. (6+1)*(3*3)
64. 63 + (1^3)
65. 63 + (3-1)
66. 63 + (3*1)
67. 36 + 31
68. round[63 + √31]
69. round[6 √133]
70. 61+(3*3)
71. (6^3)/3 - 1
72. 36 * (3-1)
73. (6^3)/3 + 1
74. round[3 √613]
75. 13*6 - 3
76-100 (except: 77, 79, 83, 85*, 86, 89,90,91,92, 95, 97, 98, 100.)
76. 63+13
77. round[61 * (3-√3)]
78. 13 * √(36)
79. round[6*13 + √3]
80. √(3^6) * 3 - 1
81. 13*6 + 3
82. √(3^6) * 3 + 1
83. round[(3+31)*√6]
84. 3^√(16) + 3
85. -----
86. round[√(6+√3) * 31]
87. (31*3) - 6
88. 61 + (3^3)
89. round[63 * √(3-1)]
90. round[13 * √(6/3)]
91. round[16 * √33]
92. round[3^√(3*6-1)]
93. 31 * (6-3)
94. 63+31
95. round[3*31 + √6]
96. (13+3)*6
97. round[(√3)^6 * √13]
98. round[36 * (1+√3)]
99. (3*31)+6
100. round[3*(31+√6)]
If you're allowed to concatenate the results of operations (e.g. (3+1)|5 = 45 ) then a solution for 85 is :
85. (3*3)|1 - 6
Python:
from itertools import permutations
from math import sqrt, floor, ceil
concat_literal_numbers_only = True
ops = { "+" : lambda a,b: a+b,
"-" : lambda a,b: a - b,
"/" : lambda a,b : a/float(b),
"*" : lambda a,b : a*b,
"^" : lambda a,b : a**b,
"C" : lambda a,b : float(str(a) + str(b)),
"n" : lambda a : -a,
"s" : lambda a : sqrt(a),
#"f" : lambda a : floor(a)
}
arity = {"+" : 2,
"-" : 2,
"/" : 2,
"*" : 2,
"^" : 2,
"C" : 2,
"n" : 1,
"s" : 1,
"f" : 1,
}
# print ops["/"](1,3)
# args: number of open args available
# nums: available digits to be used
# ops : tuple indicating commands used so far
def evaluate(cmds) :
"""Consume the list of commands in prefix notation, producing a pair (ans, unconsumed_symbols)"""
x = cmds.pop(0)
if not ops.get(x) :
return (x, cmds)
else :
args =
for y in range(arity[x]) :
try :
(a, cmds) = evaluate(cmds)
args += [a]
except OverflowError :
return (None, None)
return (ops.get(x)(*args), cmds)
def score(ops):
ret = 0
ret += ops.count("+")
ret += 1.1*ops.count("-")
ret += 2 * ops.count("*")
ret += 3 * ops.count("/")
ret += 3 * ops.count("n")
ret += 4 * ops.count("^")
ret += 4 * ops.count("s")
ret += 4 * ops.count("f")
ret += 4 * ops.count("w")
# ret += 4 * ops.count("fs")
# ret += 4 * ops.count("cs")
return ret
agenda = [{"args" : 1, "nums" : [1,3,3,6], "ops" : }]
seen = {}
only_search_for = None
ret =
def finish(ops) :
global ret
global seen
ops_tmp = ops[:]
try :
n,_ = evaluate(ops_tmp)
except :
n = None
if n is None or not (0 score(ops) :
seen[n] = ops
print ops,"t",n
while agenda :
x = agenda.pop(0)
if not x["nums"] and not x["args"] : # finished: used up all numbers; no open spaces.
finish(x["ops"])
if len(x["nums"]) == x["args"] : # fill in numbers only
for nums in set(permutations(x["nums"])) :
finish(x["ops"] + list(nums))
# print {"args" : 0,
# "nums" : ,
# "ops" : x["ops"] + list(nums)}
elif len(x["nums"]) > x["args"] :
# add new operators
for op in ops.keys() :
if arity[op] == 1 and x["ops"] and x["ops"][-1] == op :
continue # limit repeated unary operations
if arity[op] == 1 and x["ops"] and arity.get(x["ops"][-1]) == 1 :
continue # limit repeated unary operations
if (concat_literal_numbers_only and x["ops"] and (x["ops"][-1] == "C" or (len(x["ops"])>1 and x["ops"][-2] == "C")) and op != "C") :
continue
new_x = {"args" : x["args"] + arity[op] - 1,
"nums" : x["nums"],
"ops" : x["ops"] + [op]}
agenda = [new_x] + agenda
if x["args"] == 1 :
continue
for n in set(x["nums"]) :
new_nums = x["nums"][:]
new_nums.remove(n)
new_x = {"args" : x["args"] - 1,
"nums" : new_nums,
"ops" : x["ops"] + [n]}
agenda = [new_x] + agenda
# SHOW HOW TO MAKE ALL OF THE NUMBERS
miss =
for i in range(0+1,100+1) :
if not seen.get(i) :
miss += [i]
print i, "t", seen.get(i, "---")
# SHOW WHICH NUMBERS WERE MISSED
print "missed: ", miss
# IF YOU'RE LOOKING FOR ALL POSSIBLE WAYS TO MAKE SOMETHING, SHOW THEM HERE.
if only_search_for is not None :
ret = sorted(ret, key=score)
for x in ret:
print x
$endgroup$
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
add a comment |
$begingroup$
We can generate any integer using only $1$, $3$, $3$ and $6$ with the introduction of one special function.
The function in question is the Logarithm to an arbitrary base $b$ , or $log _{b} (x)$.
To begin, let's discuss square root stacking.
$sqrt{sqrt{a}}$ is equivalent to $sqrt[4]{a}$, and $sqrt{sqrt{sqrt{a}}}$ is equivalent to $sqrt[8]{a}$, which can be rewritten as $a^frac{1}{8}$. This pattern continues indefinitely; $a$ with $n$ square roots stacked to it is equal to $a^frac{1}{2^n}$.
The laws of logarithms state that $log _{b} (x^a) = a cdot log _{b} (x)$. If we take the logarithm to base $b$ or our previous square root stack, we get $log _{b} (a^frac{1}{2^n})$, or $frac{1}{2^n} cdot log _{b}a$. Setting $a$ and $b$ as 3 means that $log _{3} (sqrt{sqrt[...]{3}})$, with $n$ square roots, is equal to $frac{1}{2^n} cdot log _{3}3$, or $2^{-n}$. $(frac{1}{a^x} = a^{-x})$
$sqrt{sqrt{16}} = 2$, and $log _{b}(b^a) = a$. As such,
$0 = -log _{sqrt{sqrt{16}}}(log_{3}(3))$
$1 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{3}))$
$2 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{3}}))$
$3 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{3}}}))$
$4 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{sqrt{3}}}}))$
And so on, such that the amount of square roots is equal to your desired number.
This works for all integers; for negative numbers simply remove the $-$ at the start.
This was inspired by Numberphile's video on the four 4s.
$endgroup$
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
I will do more later.
$endgroup$
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-80
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
76: $ceil(sqrt{sqrt{sqrt{ceil(sqrt{sqrt{sqrt{sqrt{sqrt{ceil(sqrt{3!!})!}}}}})}}})*(3*6+1)$
76:(much simpler) $13*6-ceil(sqrt{3})$
77: $13*6-floor(sqrt{3})$
78: $13*floor(sqrt{3})*6$
79: $13*6+floor(sqrt{3})$
80: $13*6+ceil(sqrt{3})$
81-90:
81: $(6+3)^{(3-1)}$
82: $(6+3)^{ceil(sqrt{3})}+1$
$endgroup$
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= round(sqrt{6^3}*3^1)$
$45= 3*3*(6-1)$
$46= ceil(sqrt{6^3}*3)+1$
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ 36-3!-1$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
add a comment |
$begingroup$
Expanding on Bass's answer, I added some new numbers.
(I lost track on which numbers I added, though 1-40 is all Bass)
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3 + 16 $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51: $ 16*3+3 $
52: $ 61 - 3times3$
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ (6times3+1)times3$
58: $ (1+3)^3-6$
59: $ 63 - 3 - 1$
60: $ (1+3times3)times6$
61: $ 63 - 3 + 1$
62: $ 63 - 1^3$
63: $ 63 * 1^3$
64: $ (1+3/3)^6$
65: $ 63 + 3 - 1$
66: $ 1 times (63 + 3) $
67: $ 63 + 3 + 1$
68: $ $
69: $ $
70: $ (1+3)^3+6 $
71: $ 6^3 / 3 - 1 $
72: $ (1+3)times 3 times 6$
73: $ 6^3 / 3 + 1 $
74: $ $
75: $ 3^(3+1) - 6$
76: $ 63+13 $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ 3^(3+1) + 6$
88: $ 61 + 3^3 $
89: $ $
90: $ $
91: $ $
92: $ $
93: $ $
94: $ 33 + 61 $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ 31times3+6$
100: $ $
Only need 41, 44, 46, 47, 50, 56, 68, 69, 74, 77, 79, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, and 100 now!
New contributor
$endgroup$
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "559"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f78918%2fcreate-all-numbers-from-1-100-using-1-3-3-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
8 Answers
8
active
oldest
votes
8 Answers
8
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
These get harder with larger numbers, but here are the first 40 (and a couple of the easier ones after that) with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so from now on, only the easier ones)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51 to 60
51: $ $
52: $ $
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ $
58: $ (1+3)^3-6$
59: $ $
60: $ (1+3times3)times6$
61 to 70
61: $ $
62: $ $
63: $ $
64: $ (1+3/3)^6$
65: $ $
66: $ $
67: $ $
68: $ $
69: $ $
70: $ (1+3)^3+6$
71 to 80
71: $ $
72: $ (1+3)times 3 times 6$
73: $ $
74: $ $
75: $ $
76: $ $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81 to 90
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ $
88: $ $
89: $ $
90: $ $
91 to 100
91: $ $
92: $ $
93: $ $
94: $ $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ $
100: $ $
$endgroup$
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
add a comment |
$begingroup$
These get harder with larger numbers, but here are the first 40 (and a couple of the easier ones after that) with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so from now on, only the easier ones)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51 to 60
51: $ $
52: $ $
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ $
58: $ (1+3)^3-6$
59: $ $
60: $ (1+3times3)times6$
61 to 70
61: $ $
62: $ $
63: $ $
64: $ (1+3/3)^6$
65: $ $
66: $ $
67: $ $
68: $ $
69: $ $
70: $ (1+3)^3+6$
71 to 80
71: $ $
72: $ (1+3)times 3 times 6$
73: $ $
74: $ $
75: $ $
76: $ $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81 to 90
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ $
88: $ $
89: $ $
90: $ $
91 to 100
91: $ $
92: $ $
93: $ $
94: $ $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ $
100: $ $
$endgroup$
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
add a comment |
$begingroup$
These get harder with larger numbers, but here are the first 40 (and a couple of the easier ones after that) with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so from now on, only the easier ones)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51 to 60
51: $ $
52: $ $
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ $
58: $ (1+3)^3-6$
59: $ $
60: $ (1+3times3)times6$
61 to 70
61: $ $
62: $ $
63: $ $
64: $ (1+3/3)^6$
65: $ $
66: $ $
67: $ $
68: $ $
69: $ $
70: $ (1+3)^3+6$
71 to 80
71: $ $
72: $ (1+3)times 3 times 6$
73: $ $
74: $ $
75: $ $
76: $ $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81 to 90
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ $
88: $ $
89: $ $
90: $ $
91 to 100
91: $ $
92: $ $
93: $ $
94: $ $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ $
100: $ $
$endgroup$
These get harder with larger numbers, but here are the first 40 (and a couple of the easier ones after that) with the digits in order:
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50 (getting much harder now, so from now on, only the easier ones)
41: $ $
42: $ (1+3+3)times 6$
43: $ $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51 to 60
51: $ $
52: $ $
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ $
58: $ (1+3)^3-6$
59: $ $
60: $ (1+3times3)times6$
61 to 70
61: $ $
62: $ $
63: $ $
64: $ (1+3/3)^6$
65: $ $
66: $ $
67: $ $
68: $ $
69: $ $
70: $ (1+3)^3+6$
71 to 80
71: $ $
72: $ (1+3)times 3 times 6$
73: $ $
74: $ $
75: $ $
76: $ $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81 to 90
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ $
88: $ $
89: $ $
90: $ $
91 to 100
91: $ $
92: $ $
93: $ $
94: $ $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ $
100: $ $
edited Jan 28 at 13:29
answered Jan 28 at 1:17
BassBass
29.2k470178
29.2k470178
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
add a comment |
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
$begingroup$
Base64 because rot13 doesn't work with numbers: U29tZSBvdGhlcnM6CjQxID0gMzYgKyA2IC0gMQphbmQKNDMgPSAoM14zKSArIDE2CmFuZAo1NSA9IDYxIC0gc3FydCgzNikKYW5kCjY3ID0gNjEgLSBzcXJ0KDM2KQphbmQKNzYgPSA2MyArIDEzCmFuZAo5NCA9IDYxICsgMzM=
$endgroup$
– Outman
Jan 28 at 11:19
add a comment |
$begingroup$
Here's a solution for most of them. The remaining 21 are impossible.
- Most of them only use simple arithmetic.
- Some of them use exponentiation.
- Some use square roots.
Edit: Using only the binary operators (including digit concatenation), the number of possible combinations is pretty small (arrange three binary operators, then fill in the four numbers in some order) and I double-checked all of them with a computer. Most numbers are solvable with basic arithmetic, some require exponentiation, some require negation or square roots, and the rest are apparently impossible to solve without some extra operation such as rounding.
Accordingly, it is provably impossible to construct the following twenty-one numbers:
41, 44, 46, 47, 56, 68, 69, 74, 77, 79, 83, 85, 86, 89, 90, 91, 92, 95, 97, 98, 100.
The rest can be constructed as follows:
1-25 (complete)
1. (6+1)-(3+3)
2. (3*3)-(6+1)
3. (3*3)-(6*1)
4. 13-(6+3)
5. 36-31
6. 3*(3+1)-6
7. (6+1)+(3-3)
8. (6-3)3-1
9. 6(3-1)-3
10. 3+13-6
11. 6+3+3-1
12. (6+3+3)*1
13. 6+3+3+1
14. (6*3)-(3+1)
15. 13 + (6/3)
16. 13 + (6-3)
17. 33-16
18. (1+3)*3 + 6
19. (6 + 1/3)*3
20. (3*6)+(3-1)
21. (13-6)*3
22. 13+3+6
23. 36-13
24. (6+1)*3 +3
25. 16+(3*3)
26-50 (except 41, 44, 46, 47)
26. 33 - (6+1)
27. 33 - (6*1)
28. 61 - 33
29. 31 - (6/3)
30. (6+3+1)*3
31. 13 + (6*3)
32. 63-31
33. 13*3 - 6
34. 31+(6-3)
35. 6*(3+3) -1
36. (6+3)(3+1)
37. 6(3+3) + 1
38. 33+(6-1)
39. 33+(6*1)
40. 31+3+6
41. round[36 + √(31)]
42. (3+3+1)*6
43. 16 + (3^3)
44. round[(3-√3)^16]
45. (3*13)+6
46. round[3 * (13 + √6)]
47. round[31√3] - 6
48. (3*3 - 1) *6
49. 36+13
50. 63-13
51-75 (except 56, 68, 69, 74)
51. 16*3 + 3
52. 61 - (3*3)
53. (3*3*6)-1
54. 1*3*3*6
55. 61-(3+3)
56. √(3136) (!)
57. (13+6)*3
58. (3+1)^3 - 6
59. 63 - (3+1)
60. (63*1) - 3
61. 61 + (3 - 3)
62. 61 + (3/3)
63. (6+1)*(3*3)
64. 63 + (1^3)
65. 63 + (3-1)
66. 63 + (3*1)
67. 36 + 31
68. round[63 + √31]
69. round[6 √133]
70. 61+(3*3)
71. (6^3)/3 - 1
72. 36 * (3-1)
73. (6^3)/3 + 1
74. round[3 √613]
75. 13*6 - 3
76-100 (except: 77, 79, 83, 85*, 86, 89,90,91,92, 95, 97, 98, 100.)
76. 63+13
77. round[61 * (3-√3)]
78. 13 * √(36)
79. round[6*13 + √3]
80. √(3^6) * 3 - 1
81. 13*6 + 3
82. √(3^6) * 3 + 1
83. round[(3+31)*√6]
84. 3^√(16) + 3
85. -----
86. round[√(6+√3) * 31]
87. (31*3) - 6
88. 61 + (3^3)
89. round[63 * √(3-1)]
90. round[13 * √(6/3)]
91. round[16 * √33]
92. round[3^√(3*6-1)]
93. 31 * (6-3)
94. 63+31
95. round[3*31 + √6]
96. (13+3)*6
97. round[(√3)^6 * √13]
98. round[36 * (1+√3)]
99. (3*31)+6
100. round[3*(31+√6)]
If you're allowed to concatenate the results of operations (e.g. (3+1)|5 = 45 ) then a solution for 85 is :
85. (3*3)|1 - 6
Python:
from itertools import permutations
from math import sqrt, floor, ceil
concat_literal_numbers_only = True
ops = { "+" : lambda a,b: a+b,
"-" : lambda a,b: a - b,
"/" : lambda a,b : a/float(b),
"*" : lambda a,b : a*b,
"^" : lambda a,b : a**b,
"C" : lambda a,b : float(str(a) + str(b)),
"n" : lambda a : -a,
"s" : lambda a : sqrt(a),
#"f" : lambda a : floor(a)
}
arity = {"+" : 2,
"-" : 2,
"/" : 2,
"*" : 2,
"^" : 2,
"C" : 2,
"n" : 1,
"s" : 1,
"f" : 1,
}
# print ops["/"](1,3)
# args: number of open args available
# nums: available digits to be used
# ops : tuple indicating commands used so far
def evaluate(cmds) :
"""Consume the list of commands in prefix notation, producing a pair (ans, unconsumed_symbols)"""
x = cmds.pop(0)
if not ops.get(x) :
return (x, cmds)
else :
args =
for y in range(arity[x]) :
try :
(a, cmds) = evaluate(cmds)
args += [a]
except OverflowError :
return (None, None)
return (ops.get(x)(*args), cmds)
def score(ops):
ret = 0
ret += ops.count("+")
ret += 1.1*ops.count("-")
ret += 2 * ops.count("*")
ret += 3 * ops.count("/")
ret += 3 * ops.count("n")
ret += 4 * ops.count("^")
ret += 4 * ops.count("s")
ret += 4 * ops.count("f")
ret += 4 * ops.count("w")
# ret += 4 * ops.count("fs")
# ret += 4 * ops.count("cs")
return ret
agenda = [{"args" : 1, "nums" : [1,3,3,6], "ops" : }]
seen = {}
only_search_for = None
ret =
def finish(ops) :
global ret
global seen
ops_tmp = ops[:]
try :
n,_ = evaluate(ops_tmp)
except :
n = None
if n is None or not (0 score(ops) :
seen[n] = ops
print ops,"t",n
while agenda :
x = agenda.pop(0)
if not x["nums"] and not x["args"] : # finished: used up all numbers; no open spaces.
finish(x["ops"])
if len(x["nums"]) == x["args"] : # fill in numbers only
for nums in set(permutations(x["nums"])) :
finish(x["ops"] + list(nums))
# print {"args" : 0,
# "nums" : ,
# "ops" : x["ops"] + list(nums)}
elif len(x["nums"]) > x["args"] :
# add new operators
for op in ops.keys() :
if arity[op] == 1 and x["ops"] and x["ops"][-1] == op :
continue # limit repeated unary operations
if arity[op] == 1 and x["ops"] and arity.get(x["ops"][-1]) == 1 :
continue # limit repeated unary operations
if (concat_literal_numbers_only and x["ops"] and (x["ops"][-1] == "C" or (len(x["ops"])>1 and x["ops"][-2] == "C")) and op != "C") :
continue
new_x = {"args" : x["args"] + arity[op] - 1,
"nums" : x["nums"],
"ops" : x["ops"] + [op]}
agenda = [new_x] + agenda
if x["args"] == 1 :
continue
for n in set(x["nums"]) :
new_nums = x["nums"][:]
new_nums.remove(n)
new_x = {"args" : x["args"] - 1,
"nums" : new_nums,
"ops" : x["ops"] + [n]}
agenda = [new_x] + agenda
# SHOW HOW TO MAKE ALL OF THE NUMBERS
miss =
for i in range(0+1,100+1) :
if not seen.get(i) :
miss += [i]
print i, "t", seen.get(i, "---")
# SHOW WHICH NUMBERS WERE MISSED
print "missed: ", miss
# IF YOU'RE LOOKING FOR ALL POSSIBLE WAYS TO MAKE SOMETHING, SHOW THEM HERE.
if only_search_for is not None :
ret = sorted(ret, key=score)
for x in ret:
print x
$endgroup$
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
add a comment |
$begingroup$
Here's a solution for most of them. The remaining 21 are impossible.
- Most of them only use simple arithmetic.
- Some of them use exponentiation.
- Some use square roots.
Edit: Using only the binary operators (including digit concatenation), the number of possible combinations is pretty small (arrange three binary operators, then fill in the four numbers in some order) and I double-checked all of them with a computer. Most numbers are solvable with basic arithmetic, some require exponentiation, some require negation or square roots, and the rest are apparently impossible to solve without some extra operation such as rounding.
Accordingly, it is provably impossible to construct the following twenty-one numbers:
41, 44, 46, 47, 56, 68, 69, 74, 77, 79, 83, 85, 86, 89, 90, 91, 92, 95, 97, 98, 100.
The rest can be constructed as follows:
1-25 (complete)
1. (6+1)-(3+3)
2. (3*3)-(6+1)
3. (3*3)-(6*1)
4. 13-(6+3)
5. 36-31
6. 3*(3+1)-6
7. (6+1)+(3-3)
8. (6-3)3-1
9. 6(3-1)-3
10. 3+13-6
11. 6+3+3-1
12. (6+3+3)*1
13. 6+3+3+1
14. (6*3)-(3+1)
15. 13 + (6/3)
16. 13 + (6-3)
17. 33-16
18. (1+3)*3 + 6
19. (6 + 1/3)*3
20. (3*6)+(3-1)
21. (13-6)*3
22. 13+3+6
23. 36-13
24. (6+1)*3 +3
25. 16+(3*3)
26-50 (except 41, 44, 46, 47)
26. 33 - (6+1)
27. 33 - (6*1)
28. 61 - 33
29. 31 - (6/3)
30. (6+3+1)*3
31. 13 + (6*3)
32. 63-31
33. 13*3 - 6
34. 31+(6-3)
35. 6*(3+3) -1
36. (6+3)(3+1)
37. 6(3+3) + 1
38. 33+(6-1)
39. 33+(6*1)
40. 31+3+6
41. round[36 + √(31)]
42. (3+3+1)*6
43. 16 + (3^3)
44. round[(3-√3)^16]
45. (3*13)+6
46. round[3 * (13 + √6)]
47. round[31√3] - 6
48. (3*3 - 1) *6
49. 36+13
50. 63-13
51-75 (except 56, 68, 69, 74)
51. 16*3 + 3
52. 61 - (3*3)
53. (3*3*6)-1
54. 1*3*3*6
55. 61-(3+3)
56. √(3136) (!)
57. (13+6)*3
58. (3+1)^3 - 6
59. 63 - (3+1)
60. (63*1) - 3
61. 61 + (3 - 3)
62. 61 + (3/3)
63. (6+1)*(3*3)
64. 63 + (1^3)
65. 63 + (3-1)
66. 63 + (3*1)
67. 36 + 31
68. round[63 + √31]
69. round[6 √133]
70. 61+(3*3)
71. (6^3)/3 - 1
72. 36 * (3-1)
73. (6^3)/3 + 1
74. round[3 √613]
75. 13*6 - 3
76-100 (except: 77, 79, 83, 85*, 86, 89,90,91,92, 95, 97, 98, 100.)
76. 63+13
77. round[61 * (3-√3)]
78. 13 * √(36)
79. round[6*13 + √3]
80. √(3^6) * 3 - 1
81. 13*6 + 3
82. √(3^6) * 3 + 1
83. round[(3+31)*√6]
84. 3^√(16) + 3
85. -----
86. round[√(6+√3) * 31]
87. (31*3) - 6
88. 61 + (3^3)
89. round[63 * √(3-1)]
90. round[13 * √(6/3)]
91. round[16 * √33]
92. round[3^√(3*6-1)]
93. 31 * (6-3)
94. 63+31
95. round[3*31 + √6]
96. (13+3)*6
97. round[(√3)^6 * √13]
98. round[36 * (1+√3)]
99. (3*31)+6
100. round[3*(31+√6)]
If you're allowed to concatenate the results of operations (e.g. (3+1)|5 = 45 ) then a solution for 85 is :
85. (3*3)|1 - 6
Python:
from itertools import permutations
from math import sqrt, floor, ceil
concat_literal_numbers_only = True
ops = { "+" : lambda a,b: a+b,
"-" : lambda a,b: a - b,
"/" : lambda a,b : a/float(b),
"*" : lambda a,b : a*b,
"^" : lambda a,b : a**b,
"C" : lambda a,b : float(str(a) + str(b)),
"n" : lambda a : -a,
"s" : lambda a : sqrt(a),
#"f" : lambda a : floor(a)
}
arity = {"+" : 2,
"-" : 2,
"/" : 2,
"*" : 2,
"^" : 2,
"C" : 2,
"n" : 1,
"s" : 1,
"f" : 1,
}
# print ops["/"](1,3)
# args: number of open args available
# nums: available digits to be used
# ops : tuple indicating commands used so far
def evaluate(cmds) :
"""Consume the list of commands in prefix notation, producing a pair (ans, unconsumed_symbols)"""
x = cmds.pop(0)
if not ops.get(x) :
return (x, cmds)
else :
args =
for y in range(arity[x]) :
try :
(a, cmds) = evaluate(cmds)
args += [a]
except OverflowError :
return (None, None)
return (ops.get(x)(*args), cmds)
def score(ops):
ret = 0
ret += ops.count("+")
ret += 1.1*ops.count("-")
ret += 2 * ops.count("*")
ret += 3 * ops.count("/")
ret += 3 * ops.count("n")
ret += 4 * ops.count("^")
ret += 4 * ops.count("s")
ret += 4 * ops.count("f")
ret += 4 * ops.count("w")
# ret += 4 * ops.count("fs")
# ret += 4 * ops.count("cs")
return ret
agenda = [{"args" : 1, "nums" : [1,3,3,6], "ops" : }]
seen = {}
only_search_for = None
ret =
def finish(ops) :
global ret
global seen
ops_tmp = ops[:]
try :
n,_ = evaluate(ops_tmp)
except :
n = None
if n is None or not (0 score(ops) :
seen[n] = ops
print ops,"t",n
while agenda :
x = agenda.pop(0)
if not x["nums"] and not x["args"] : # finished: used up all numbers; no open spaces.
finish(x["ops"])
if len(x["nums"]) == x["args"] : # fill in numbers only
for nums in set(permutations(x["nums"])) :
finish(x["ops"] + list(nums))
# print {"args" : 0,
# "nums" : ,
# "ops" : x["ops"] + list(nums)}
elif len(x["nums"]) > x["args"] :
# add new operators
for op in ops.keys() :
if arity[op] == 1 and x["ops"] and x["ops"][-1] == op :
continue # limit repeated unary operations
if arity[op] == 1 and x["ops"] and arity.get(x["ops"][-1]) == 1 :
continue # limit repeated unary operations
if (concat_literal_numbers_only and x["ops"] and (x["ops"][-1] == "C" or (len(x["ops"])>1 and x["ops"][-2] == "C")) and op != "C") :
continue
new_x = {"args" : x["args"] + arity[op] - 1,
"nums" : x["nums"],
"ops" : x["ops"] + [op]}
agenda = [new_x] + agenda
if x["args"] == 1 :
continue
for n in set(x["nums"]) :
new_nums = x["nums"][:]
new_nums.remove(n)
new_x = {"args" : x["args"] - 1,
"nums" : new_nums,
"ops" : x["ops"] + [n]}
agenda = [new_x] + agenda
# SHOW HOW TO MAKE ALL OF THE NUMBERS
miss =
for i in range(0+1,100+1) :
if not seen.get(i) :
miss += [i]
print i, "t", seen.get(i, "---")
# SHOW WHICH NUMBERS WERE MISSED
print "missed: ", miss
# IF YOU'RE LOOKING FOR ALL POSSIBLE WAYS TO MAKE SOMETHING, SHOW THEM HERE.
if only_search_for is not None :
ret = sorted(ret, key=score)
for x in ret:
print x
$endgroup$
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
add a comment |
$begingroup$
Here's a solution for most of them. The remaining 21 are impossible.
- Most of them only use simple arithmetic.
- Some of them use exponentiation.
- Some use square roots.
Edit: Using only the binary operators (including digit concatenation), the number of possible combinations is pretty small (arrange three binary operators, then fill in the four numbers in some order) and I double-checked all of them with a computer. Most numbers are solvable with basic arithmetic, some require exponentiation, some require negation or square roots, and the rest are apparently impossible to solve without some extra operation such as rounding.
Accordingly, it is provably impossible to construct the following twenty-one numbers:
41, 44, 46, 47, 56, 68, 69, 74, 77, 79, 83, 85, 86, 89, 90, 91, 92, 95, 97, 98, 100.
The rest can be constructed as follows:
1-25 (complete)
1. (6+1)-(3+3)
2. (3*3)-(6+1)
3. (3*3)-(6*1)
4. 13-(6+3)
5. 36-31
6. 3*(3+1)-6
7. (6+1)+(3-3)
8. (6-3)3-1
9. 6(3-1)-3
10. 3+13-6
11. 6+3+3-1
12. (6+3+3)*1
13. 6+3+3+1
14. (6*3)-(3+1)
15. 13 + (6/3)
16. 13 + (6-3)
17. 33-16
18. (1+3)*3 + 6
19. (6 + 1/3)*3
20. (3*6)+(3-1)
21. (13-6)*3
22. 13+3+6
23. 36-13
24. (6+1)*3 +3
25. 16+(3*3)
26-50 (except 41, 44, 46, 47)
26. 33 - (6+1)
27. 33 - (6*1)
28. 61 - 33
29. 31 - (6/3)
30. (6+3+1)*3
31. 13 + (6*3)
32. 63-31
33. 13*3 - 6
34. 31+(6-3)
35. 6*(3+3) -1
36. (6+3)(3+1)
37. 6(3+3) + 1
38. 33+(6-1)
39. 33+(6*1)
40. 31+3+6
41. round[36 + √(31)]
42. (3+3+1)*6
43. 16 + (3^3)
44. round[(3-√3)^16]
45. (3*13)+6
46. round[3 * (13 + √6)]
47. round[31√3] - 6
48. (3*3 - 1) *6
49. 36+13
50. 63-13
51-75 (except 56, 68, 69, 74)
51. 16*3 + 3
52. 61 - (3*3)
53. (3*3*6)-1
54. 1*3*3*6
55. 61-(3+3)
56. √(3136) (!)
57. (13+6)*3
58. (3+1)^3 - 6
59. 63 - (3+1)
60. (63*1) - 3
61. 61 + (3 - 3)
62. 61 + (3/3)
63. (6+1)*(3*3)
64. 63 + (1^3)
65. 63 + (3-1)
66. 63 + (3*1)
67. 36 + 31
68. round[63 + √31]
69. round[6 √133]
70. 61+(3*3)
71. (6^3)/3 - 1
72. 36 * (3-1)
73. (6^3)/3 + 1
74. round[3 √613]
75. 13*6 - 3
76-100 (except: 77, 79, 83, 85*, 86, 89,90,91,92, 95, 97, 98, 100.)
76. 63+13
77. round[61 * (3-√3)]
78. 13 * √(36)
79. round[6*13 + √3]
80. √(3^6) * 3 - 1
81. 13*6 + 3
82. √(3^6) * 3 + 1
83. round[(3+31)*√6]
84. 3^√(16) + 3
85. -----
86. round[√(6+√3) * 31]
87. (31*3) - 6
88. 61 + (3^3)
89. round[63 * √(3-1)]
90. round[13 * √(6/3)]
91. round[16 * √33]
92. round[3^√(3*6-1)]
93. 31 * (6-3)
94. 63+31
95. round[3*31 + √6]
96. (13+3)*6
97. round[(√3)^6 * √13]
98. round[36 * (1+√3)]
99. (3*31)+6
100. round[3*(31+√6)]
If you're allowed to concatenate the results of operations (e.g. (3+1)|5 = 45 ) then a solution for 85 is :
85. (3*3)|1 - 6
Python:
from itertools import permutations
from math import sqrt, floor, ceil
concat_literal_numbers_only = True
ops = { "+" : lambda a,b: a+b,
"-" : lambda a,b: a - b,
"/" : lambda a,b : a/float(b),
"*" : lambda a,b : a*b,
"^" : lambda a,b : a**b,
"C" : lambda a,b : float(str(a) + str(b)),
"n" : lambda a : -a,
"s" : lambda a : sqrt(a),
#"f" : lambda a : floor(a)
}
arity = {"+" : 2,
"-" : 2,
"/" : 2,
"*" : 2,
"^" : 2,
"C" : 2,
"n" : 1,
"s" : 1,
"f" : 1,
}
# print ops["/"](1,3)
# args: number of open args available
# nums: available digits to be used
# ops : tuple indicating commands used so far
def evaluate(cmds) :
"""Consume the list of commands in prefix notation, producing a pair (ans, unconsumed_symbols)"""
x = cmds.pop(0)
if not ops.get(x) :
return (x, cmds)
else :
args =
for y in range(arity[x]) :
try :
(a, cmds) = evaluate(cmds)
args += [a]
except OverflowError :
return (None, None)
return (ops.get(x)(*args), cmds)
def score(ops):
ret = 0
ret += ops.count("+")
ret += 1.1*ops.count("-")
ret += 2 * ops.count("*")
ret += 3 * ops.count("/")
ret += 3 * ops.count("n")
ret += 4 * ops.count("^")
ret += 4 * ops.count("s")
ret += 4 * ops.count("f")
ret += 4 * ops.count("w")
# ret += 4 * ops.count("fs")
# ret += 4 * ops.count("cs")
return ret
agenda = [{"args" : 1, "nums" : [1,3,3,6], "ops" : }]
seen = {}
only_search_for = None
ret =
def finish(ops) :
global ret
global seen
ops_tmp = ops[:]
try :
n,_ = evaluate(ops_tmp)
except :
n = None
if n is None or not (0 score(ops) :
seen[n] = ops
print ops,"t",n
while agenda :
x = agenda.pop(0)
if not x["nums"] and not x["args"] : # finished: used up all numbers; no open spaces.
finish(x["ops"])
if len(x["nums"]) == x["args"] : # fill in numbers only
for nums in set(permutations(x["nums"])) :
finish(x["ops"] + list(nums))
# print {"args" : 0,
# "nums" : ,
# "ops" : x["ops"] + list(nums)}
elif len(x["nums"]) > x["args"] :
# add new operators
for op in ops.keys() :
if arity[op] == 1 and x["ops"] and x["ops"][-1] == op :
continue # limit repeated unary operations
if arity[op] == 1 and x["ops"] and arity.get(x["ops"][-1]) == 1 :
continue # limit repeated unary operations
if (concat_literal_numbers_only and x["ops"] and (x["ops"][-1] == "C" or (len(x["ops"])>1 and x["ops"][-2] == "C")) and op != "C") :
continue
new_x = {"args" : x["args"] + arity[op] - 1,
"nums" : x["nums"],
"ops" : x["ops"] + [op]}
agenda = [new_x] + agenda
if x["args"] == 1 :
continue
for n in set(x["nums"]) :
new_nums = x["nums"][:]
new_nums.remove(n)
new_x = {"args" : x["args"] - 1,
"nums" : new_nums,
"ops" : x["ops"] + [n]}
agenda = [new_x] + agenda
# SHOW HOW TO MAKE ALL OF THE NUMBERS
miss =
for i in range(0+1,100+1) :
if not seen.get(i) :
miss += [i]
print i, "t", seen.get(i, "---")
# SHOW WHICH NUMBERS WERE MISSED
print "missed: ", miss
# IF YOU'RE LOOKING FOR ALL POSSIBLE WAYS TO MAKE SOMETHING, SHOW THEM HERE.
if only_search_for is not None :
ret = sorted(ret, key=score)
for x in ret:
print x
$endgroup$
Here's a solution for most of them. The remaining 21 are impossible.
- Most of them only use simple arithmetic.
- Some of them use exponentiation.
- Some use square roots.
Edit: Using only the binary operators (including digit concatenation), the number of possible combinations is pretty small (arrange three binary operators, then fill in the four numbers in some order) and I double-checked all of them with a computer. Most numbers are solvable with basic arithmetic, some require exponentiation, some require negation or square roots, and the rest are apparently impossible to solve without some extra operation such as rounding.
Accordingly, it is provably impossible to construct the following twenty-one numbers:
41, 44, 46, 47, 56, 68, 69, 74, 77, 79, 83, 85, 86, 89, 90, 91, 92, 95, 97, 98, 100.
The rest can be constructed as follows:
1-25 (complete)
1. (6+1)-(3+3)
2. (3*3)-(6+1)
3. (3*3)-(6*1)
4. 13-(6+3)
5. 36-31
6. 3*(3+1)-6
7. (6+1)+(3-3)
8. (6-3)3-1
9. 6(3-1)-3
10. 3+13-6
11. 6+3+3-1
12. (6+3+3)*1
13. 6+3+3+1
14. (6*3)-(3+1)
15. 13 + (6/3)
16. 13 + (6-3)
17. 33-16
18. (1+3)*3 + 6
19. (6 + 1/3)*3
20. (3*6)+(3-1)
21. (13-6)*3
22. 13+3+6
23. 36-13
24. (6+1)*3 +3
25. 16+(3*3)
26-50 (except 41, 44, 46, 47)
26. 33 - (6+1)
27. 33 - (6*1)
28. 61 - 33
29. 31 - (6/3)
30. (6+3+1)*3
31. 13 + (6*3)
32. 63-31
33. 13*3 - 6
34. 31+(6-3)
35. 6*(3+3) -1
36. (6+3)(3+1)
37. 6(3+3) + 1
38. 33+(6-1)
39. 33+(6*1)
40. 31+3+6
41. round[36 + √(31)]
42. (3+3+1)*6
43. 16 + (3^3)
44. round[(3-√3)^16]
45. (3*13)+6
46. round[3 * (13 + √6)]
47. round[31√3] - 6
48. (3*3 - 1) *6
49. 36+13
50. 63-13
51-75 (except 56, 68, 69, 74)
51. 16*3 + 3
52. 61 - (3*3)
53. (3*3*6)-1
54. 1*3*3*6
55. 61-(3+3)
56. √(3136) (!)
57. (13+6)*3
58. (3+1)^3 - 6
59. 63 - (3+1)
60. (63*1) - 3
61. 61 + (3 - 3)
62. 61 + (3/3)
63. (6+1)*(3*3)
64. 63 + (1^3)
65. 63 + (3-1)
66. 63 + (3*1)
67. 36 + 31
68. round[63 + √31]
69. round[6 √133]
70. 61+(3*3)
71. (6^3)/3 - 1
72. 36 * (3-1)
73. (6^3)/3 + 1
74. round[3 √613]
75. 13*6 - 3
76-100 (except: 77, 79, 83, 85*, 86, 89,90,91,92, 95, 97, 98, 100.)
76. 63+13
77. round[61 * (3-√3)]
78. 13 * √(36)
79. round[6*13 + √3]
80. √(3^6) * 3 - 1
81. 13*6 + 3
82. √(3^6) * 3 + 1
83. round[(3+31)*√6]
84. 3^√(16) + 3
85. -----
86. round[√(6+√3) * 31]
87. (31*3) - 6
88. 61 + (3^3)
89. round[63 * √(3-1)]
90. round[13 * √(6/3)]
91. round[16 * √33]
92. round[3^√(3*6-1)]
93. 31 * (6-3)
94. 63+31
95. round[3*31 + √6]
96. (13+3)*6
97. round[(√3)^6 * √13]
98. round[36 * (1+√3)]
99. (3*31)+6
100. round[3*(31+√6)]
If you're allowed to concatenate the results of operations (e.g. (3+1)|5 = 45 ) then a solution for 85 is :
85. (3*3)|1 - 6
Python:
from itertools import permutations
from math import sqrt, floor, ceil
concat_literal_numbers_only = True
ops = { "+" : lambda a,b: a+b,
"-" : lambda a,b: a - b,
"/" : lambda a,b : a/float(b),
"*" : lambda a,b : a*b,
"^" : lambda a,b : a**b,
"C" : lambda a,b : float(str(a) + str(b)),
"n" : lambda a : -a,
"s" : lambda a : sqrt(a),
#"f" : lambda a : floor(a)
}
arity = {"+" : 2,
"-" : 2,
"/" : 2,
"*" : 2,
"^" : 2,
"C" : 2,
"n" : 1,
"s" : 1,
"f" : 1,
}
# print ops["/"](1,3)
# args: number of open args available
# nums: available digits to be used
# ops : tuple indicating commands used so far
def evaluate(cmds) :
"""Consume the list of commands in prefix notation, producing a pair (ans, unconsumed_symbols)"""
x = cmds.pop(0)
if not ops.get(x) :
return (x, cmds)
else :
args =
for y in range(arity[x]) :
try :
(a, cmds) = evaluate(cmds)
args += [a]
except OverflowError :
return (None, None)
return (ops.get(x)(*args), cmds)
def score(ops):
ret = 0
ret += ops.count("+")
ret += 1.1*ops.count("-")
ret += 2 * ops.count("*")
ret += 3 * ops.count("/")
ret += 3 * ops.count("n")
ret += 4 * ops.count("^")
ret += 4 * ops.count("s")
ret += 4 * ops.count("f")
ret += 4 * ops.count("w")
# ret += 4 * ops.count("fs")
# ret += 4 * ops.count("cs")
return ret
agenda = [{"args" : 1, "nums" : [1,3,3,6], "ops" : }]
seen = {}
only_search_for = None
ret =
def finish(ops) :
global ret
global seen
ops_tmp = ops[:]
try :
n,_ = evaluate(ops_tmp)
except :
n = None
if n is None or not (0 score(ops) :
seen[n] = ops
print ops,"t",n
while agenda :
x = agenda.pop(0)
if not x["nums"] and not x["args"] : # finished: used up all numbers; no open spaces.
finish(x["ops"])
if len(x["nums"]) == x["args"] : # fill in numbers only
for nums in set(permutations(x["nums"])) :
finish(x["ops"] + list(nums))
# print {"args" : 0,
# "nums" : ,
# "ops" : x["ops"] + list(nums)}
elif len(x["nums"]) > x["args"] :
# add new operators
for op in ops.keys() :
if arity[op] == 1 and x["ops"] and x["ops"][-1] == op :
continue # limit repeated unary operations
if arity[op] == 1 and x["ops"] and arity.get(x["ops"][-1]) == 1 :
continue # limit repeated unary operations
if (concat_literal_numbers_only and x["ops"] and (x["ops"][-1] == "C" or (len(x["ops"])>1 and x["ops"][-2] == "C")) and op != "C") :
continue
new_x = {"args" : x["args"] + arity[op] - 1,
"nums" : x["nums"],
"ops" : x["ops"] + [op]}
agenda = [new_x] + agenda
if x["args"] == 1 :
continue
for n in set(x["nums"]) :
new_nums = x["nums"][:]
new_nums.remove(n)
new_x = {"args" : x["args"] - 1,
"nums" : new_nums,
"ops" : x["ops"] + [n]}
agenda = [new_x] + agenda
# SHOW HOW TO MAKE ALL OF THE NUMBERS
miss =
for i in range(0+1,100+1) :
if not seen.get(i) :
miss += [i]
print i, "t", seen.get(i, "---")
# SHOW WHICH NUMBERS WERE MISSED
print "missed: ", miss
# IF YOU'RE LOOKING FOR ALL POSSIBLE WAYS TO MAKE SOMETHING, SHOW THEM HERE.
if only_search_for is not None :
ret = sorted(ret, key=score)
for x in ret:
print x
edited Feb 1 at 2:09
answered Jan 28 at 7:27
user326210user326210
1712
1712
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
add a comment |
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
Although it's unlikely that you'd find the missing solutions there, looks like the code ignores Nth roots entirely.
$endgroup$
– Bass
Jan 29 at 9:47
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
$begingroup$
@Bass . Thanks, yes ---- when posting the code I took out some operators that didn't add to the number of solutions.
$endgroup$
– user326210
Jan 30 at 1:00
add a comment |
$begingroup$
We can generate any integer using only $1$, $3$, $3$ and $6$ with the introduction of one special function.
The function in question is the Logarithm to an arbitrary base $b$ , or $log _{b} (x)$.
To begin, let's discuss square root stacking.
$sqrt{sqrt{a}}$ is equivalent to $sqrt[4]{a}$, and $sqrt{sqrt{sqrt{a}}}$ is equivalent to $sqrt[8]{a}$, which can be rewritten as $a^frac{1}{8}$. This pattern continues indefinitely; $a$ with $n$ square roots stacked to it is equal to $a^frac{1}{2^n}$.
The laws of logarithms state that $log _{b} (x^a) = a cdot log _{b} (x)$. If we take the logarithm to base $b$ or our previous square root stack, we get $log _{b} (a^frac{1}{2^n})$, or $frac{1}{2^n} cdot log _{b}a$. Setting $a$ and $b$ as 3 means that $log _{3} (sqrt{sqrt[...]{3}})$, with $n$ square roots, is equal to $frac{1}{2^n} cdot log _{3}3$, or $2^{-n}$. $(frac{1}{a^x} = a^{-x})$
$sqrt{sqrt{16}} = 2$, and $log _{b}(b^a) = a$. As such,
$0 = -log _{sqrt{sqrt{16}}}(log_{3}(3))$
$1 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{3}))$
$2 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{3}}))$
$3 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{3}}}))$
$4 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{sqrt{3}}}}))$
And so on, such that the amount of square roots is equal to your desired number.
This works for all integers; for negative numbers simply remove the $-$ at the start.
This was inspired by Numberphile's video on the four 4s.
$endgroup$
add a comment |
$begingroup$
We can generate any integer using only $1$, $3$, $3$ and $6$ with the introduction of one special function.
The function in question is the Logarithm to an arbitrary base $b$ , or $log _{b} (x)$.
To begin, let's discuss square root stacking.
$sqrt{sqrt{a}}$ is equivalent to $sqrt[4]{a}$, and $sqrt{sqrt{sqrt{a}}}$ is equivalent to $sqrt[8]{a}$, which can be rewritten as $a^frac{1}{8}$. This pattern continues indefinitely; $a$ with $n$ square roots stacked to it is equal to $a^frac{1}{2^n}$.
The laws of logarithms state that $log _{b} (x^a) = a cdot log _{b} (x)$. If we take the logarithm to base $b$ or our previous square root stack, we get $log _{b} (a^frac{1}{2^n})$, or $frac{1}{2^n} cdot log _{b}a$. Setting $a$ and $b$ as 3 means that $log _{3} (sqrt{sqrt[...]{3}})$, with $n$ square roots, is equal to $frac{1}{2^n} cdot log _{3}3$, or $2^{-n}$. $(frac{1}{a^x} = a^{-x})$
$sqrt{sqrt{16}} = 2$, and $log _{b}(b^a) = a$. As such,
$0 = -log _{sqrt{sqrt{16}}}(log_{3}(3))$
$1 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{3}))$
$2 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{3}}))$
$3 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{3}}}))$
$4 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{sqrt{3}}}}))$
And so on, such that the amount of square roots is equal to your desired number.
This works for all integers; for negative numbers simply remove the $-$ at the start.
This was inspired by Numberphile's video on the four 4s.
$endgroup$
add a comment |
$begingroup$
We can generate any integer using only $1$, $3$, $3$ and $6$ with the introduction of one special function.
The function in question is the Logarithm to an arbitrary base $b$ , or $log _{b} (x)$.
To begin, let's discuss square root stacking.
$sqrt{sqrt{a}}$ is equivalent to $sqrt[4]{a}$, and $sqrt{sqrt{sqrt{a}}}$ is equivalent to $sqrt[8]{a}$, which can be rewritten as $a^frac{1}{8}$. This pattern continues indefinitely; $a$ with $n$ square roots stacked to it is equal to $a^frac{1}{2^n}$.
The laws of logarithms state that $log _{b} (x^a) = a cdot log _{b} (x)$. If we take the logarithm to base $b$ or our previous square root stack, we get $log _{b} (a^frac{1}{2^n})$, or $frac{1}{2^n} cdot log _{b}a$. Setting $a$ and $b$ as 3 means that $log _{3} (sqrt{sqrt[...]{3}})$, with $n$ square roots, is equal to $frac{1}{2^n} cdot log _{3}3$, or $2^{-n}$. $(frac{1}{a^x} = a^{-x})$
$sqrt{sqrt{16}} = 2$, and $log _{b}(b^a) = a$. As such,
$0 = -log _{sqrt{sqrt{16}}}(log_{3}(3))$
$1 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{3}))$
$2 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{3}}))$
$3 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{3}}}))$
$4 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{sqrt{3}}}}))$
And so on, such that the amount of square roots is equal to your desired number.
This works for all integers; for negative numbers simply remove the $-$ at the start.
This was inspired by Numberphile's video on the four 4s.
$endgroup$
We can generate any integer using only $1$, $3$, $3$ and $6$ with the introduction of one special function.
The function in question is the Logarithm to an arbitrary base $b$ , or $log _{b} (x)$.
To begin, let's discuss square root stacking.
$sqrt{sqrt{a}}$ is equivalent to $sqrt[4]{a}$, and $sqrt{sqrt{sqrt{a}}}$ is equivalent to $sqrt[8]{a}$, which can be rewritten as $a^frac{1}{8}$. This pattern continues indefinitely; $a$ with $n$ square roots stacked to it is equal to $a^frac{1}{2^n}$.
The laws of logarithms state that $log _{b} (x^a) = a cdot log _{b} (x)$. If we take the logarithm to base $b$ or our previous square root stack, we get $log _{b} (a^frac{1}{2^n})$, or $frac{1}{2^n} cdot log _{b}a$. Setting $a$ and $b$ as 3 means that $log _{3} (sqrt{sqrt[...]{3}})$, with $n$ square roots, is equal to $frac{1}{2^n} cdot log _{3}3$, or $2^{-n}$. $(frac{1}{a^x} = a^{-x})$
$sqrt{sqrt{16}} = 2$, and $log _{b}(b^a) = a$. As such,
$0 = -log _{sqrt{sqrt{16}}}(log_{3}(3))$
$1 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{3}))$
$2 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{3}}))$
$3 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{3}}}))$
$4 = -log _{sqrt{sqrt{16}}}(log_{3}(sqrt{sqrt{sqrt{sqrt{3}}}}))$
And so on, such that the amount of square roots is equal to your desired number.
This works for all integers; for negative numbers simply remove the $-$ at the start.
This was inspired by Numberphile's video on the four 4s.
answered Jan 28 at 14:27
user56759user56759
311
311
add a comment |
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
I will do more later.
$endgroup$
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
I will do more later.
$endgroup$
add a comment |
$begingroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
I will do more later.
$endgroup$
Here are some:
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
22: (omega kyrpton did some) $3 * 6 + 3 + 1$
I will do more later.
edited Jan 28 at 15:54
answered Jan 27 at 22:33
Yout RiedYout Ried
894119
894119
add a comment |
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-80
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
76: $ceil(sqrt{sqrt{sqrt{ceil(sqrt{sqrt{sqrt{sqrt{sqrt{ceil(sqrt{3!!})!}}}}})}}})*(3*6+1)$
76:(much simpler) $13*6-ceil(sqrt{3})$
77: $13*6-floor(sqrt{3})$
78: $13*floor(sqrt{3})*6$
79: $13*6+floor(sqrt{3})$
80: $13*6+ceil(sqrt{3})$
81-90:
81: $(6+3)^{(3-1)}$
82: $(6+3)^{ceil(sqrt{3})}+1$
$endgroup$
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-80
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
76: $ceil(sqrt{sqrt{sqrt{ceil(sqrt{sqrt{sqrt{sqrt{sqrt{ceil(sqrt{3!!})!}}}}})}}})*(3*6+1)$
76:(much simpler) $13*6-ceil(sqrt{3})$
77: $13*6-floor(sqrt{3})$
78: $13*floor(sqrt{3})*6$
79: $13*6+floor(sqrt{3})$
80: $13*6+ceil(sqrt{3})$
81-90:
81: $(6+3)^{(3-1)}$
82: $(6+3)^{ceil(sqrt{3})}+1$
$endgroup$
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
add a comment |
$begingroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-80
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
76: $ceil(sqrt{sqrt{sqrt{ceil(sqrt{sqrt{sqrt{sqrt{sqrt{ceil(sqrt{3!!})!}}}}})}}})*(3*6+1)$
76:(much simpler) $13*6-ceil(sqrt{3})$
77: $13*6-floor(sqrt{3})$
78: $13*floor(sqrt{3})*6$
79: $13*6+floor(sqrt{3})$
80: $13*6+ceil(sqrt{3})$
81-90:
81: $(6+3)^{(3-1)}$
82: $(6+3)^{ceil(sqrt{3})}+1$
$endgroup$
Adding some more...
1-20: (Credits to @YoutRied)
1: $3 + 3 - 6 + 1$
2: $3 * 3 - (6 + 1)$
3: $3 * 3 * 1 - 6$
4: $3 * 3 - 6 + 1$
5: $(3 * 6) / 3 - 1$
6: $(3 * 6) / 3 * 1$
7: $(3 * 6) / 3 + 1$
8: $3 * 3 - 1 ^ 6$
9: $(3 * 6) / (3 - 1)$
10: $3 * 3 + 1 ^ 6$
11: $36 / 3 - 1$
12: $36 / 3 * 1$
13: $36 / 3 + 1$
14: $3 * 6 - (3 + 1)$
15: $3 * 6 - (3 * 1)$
16: $3 * 6 - (3 - 1)$
17: $3 * 6 - 1 ^ 3$
18: $3 * 6 * 1 ^ 3$
19: $3 * 6 + 1 ^ 3$
20: $3 * 6 + 3 - 1$
21-29
21: $3 * 6 + 3 * 1$
22: $( 1 + 3 ) ! - ( 6 / 3 )$
23: $( 1 + 3 ) ! - ( 6 - 3 )$
24: $( 6 - 3 / 3 - 1 ) !$
25: $1 * 3 ^ 3 - floor(sqrt{6})$
26: $( 6 - 3 ) ^ 3 - 1$
27: $( 6 - 3 ) ^ 3 * 1$
28: $( 6 - 3 ) ^ 3 + 1$
29: $31 - 6 / 3$
41-50: (Credits to @Bass for 42, 45, 49)
41: $ (-1+3!)+36 $
42: $ (1+3+3)times 6$
43: $ 31 + 6 * ceil(sqrt{3})$
44: $floor( 1 * 3 * sqrt{6 ^ 3}) $
45: $ 13times3+6$
46: $ ceil(sqrt{6 ^ 3} + 31)$
47: $ floor(sqrt{sqrt{sqrt{sqrt{sqrt{31!}}}}})+36$
48: $6 * ( 3 * 3 - 1 )$
49: $13+36$
50: $ (6+1)^2 + 3 - 3$
51-60:
51: $( 3 * 6 - 1 ) * 3$
52: $( 3 + 3 + 1 ) * ceil(sqrt{6})$
53: $-1+( 3 * 3 * 6 )$
54: $ 1*3 * 3 * 6 $
55: $1+3*3*6$
56: $61-3!+floor(sqrt{3})$
57: $1*63-3!$
58: $1+63-3!$
59: $floor(sqrt{sqrt{sqrt{sqrt{sqrt{6^{(3-1)}}}}}}*3)$
60: $(1+3*3)*6$
61-70:
61: $63-3+1$
62: $63+1-ceil(sqrt{3})$
63: $63-floor(sqrt{3})+1$
64: $63+ceil(sqrt{3})-1$
65: $63+3-1$
66: $63+3*1$
67: $63+3+1$
68: $61+3!+floor(sqrt{3})$
69: $61+3!+ceil(sqrt{3})$
70: $61+3*3$
71-80
71: $(3+1)!*3-floor(sqrt{sqrt{6}})$
72: $(3+1)*3*6$
73: $(3+1)!*3+floor(sqrt{sqrt{6}})$
74: $(3+1)!*3+floor(sqrt{6})$
75: $(3+1)!*3+ceil(sqrt{6})$
76: $ceil(sqrt{sqrt{sqrt{ceil(sqrt{sqrt{sqrt{sqrt{sqrt{ceil(sqrt{3!!})!}}}}})}}})*(3*6+1)$
76:(much simpler) $13*6-ceil(sqrt{3})$
77: $13*6-floor(sqrt{3})$
78: $13*floor(sqrt{3})*6$
79: $13*6+floor(sqrt{3})$
80: $13*6+ceil(sqrt{3})$
81-90:
81: $(6+3)^{(3-1)}$
82: $(6+3)^{ceil(sqrt{3})}+1$
edited Jan 28 at 8:36
answered Jan 27 at 23:31
Omega KryptonOmega Krypton
3,6941338
3,6941338
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
add a comment |
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
Who said you could use factorials?
$endgroup$
– Yout Ried
Jan 28 at 0:20
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
What are number 23 (plus you probably can't use factorials and 24? I don't get them.
$endgroup$
– Yout Ried
Jan 28 at 1:08
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
$begingroup$
Oops forgot a ")" and maybe you're missing a factorial for number 24
$endgroup$
– Yout Ried
Jan 28 at 1:16
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= round(sqrt{6^3}*3^1)$
$45= 3*3*(6-1)$
$46= ceil(sqrt{6^3}*3)+1$
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= round(sqrt{6^3}*3^1)$
$45= 3*3*(6-1)$
$46= ceil(sqrt{6^3}*3)+1$
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
add a comment |
$begingroup$
Partial answer 1-50 (w/e 41,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= round(sqrt{6^3}*3^1)$
$45= 3*3*(6-1)$
$46= ceil(sqrt{6^3}*3)+1$
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
$endgroup$
Partial answer 1-50 (w/e 41,47):
$1= 1+3+3-6$
$2= 1 + (frac{6}{(3+3)})$
$3= 1^3+(frac{6}{3})$
$4= (frac{6}{3})+3-1$
$5= (frac{6}{3})+3^1$
$6= 6^1+3-3$
$7= 6+1-3+3$
$8= 6 + 3 - 1^3$
$9= 1^3 * (3+6)$
$10= 1^3 +3+6$
$11= 13 - (frac{6}{3})$
$12= 6+3+3^1$
$13= 6+3+3+1$
$14= 6*3 - 3 - 1$
$15= 6*3 - 3^1$
$16= 16 + 3 - 3$
$17= 16 + (frac{3}{3})$
$18= (frac{6*3}{1^3})$
$19= 6*3+1^3$
$20= 6*3+3-1$
$21= 6*3+3^1$
$22= 6*3+3+1$
$23= 36-13$
$24= 6*(3+1^3)$
$25= 16+(3*3)$
$26= 13*(frac{6}{3})$
$27= 33-6^1$
$28= 33-6+1$
$29= 31-(frac{6}{3})$
$30= 6*(3+3-1)$
$31= 13+3*6$
$32= 3^3+6-1$
$33= (frac{33}{1^6})$
$34= 33+1^6$
$35= (3+3)*6-1$
$36= (3+3)^1*6$
$37= 1+(3+3)*6$
$38= 33+6-1$
$39= 33+6^1$
$40= 1+33+6$
$41= $
$42= (1+3+3)*6$
$43= 16+3^3$
$44= round(sqrt{6^3}*3^1)$
$45= 3*3*(6-1)$
$46= ceil(sqrt{6^3}*3)+1$
$47= $
$48= ((3*3)-1)*6$
$49= 16+33$
$50= 63-13$
edited Jan 28 at 3:39
answered Jan 28 at 3:01
MukyuuMukyuu
340112
340112
add a comment |
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ 36-3!-1$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ 36-3!-1$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
add a comment |
$begingroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ 36-3!-1$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
$endgroup$
Alrighty, I'm piggybacking off of @OmegaKrypton else and adding some of my own.
1 to 10
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1^3 +3/6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1^3 + 3+6$
11 to 20
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21 to 30
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 3*6+3!-1$ or $ (6-1)^(3!/3)$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ 36-3!-1$
30: $ (-1+3+3)times 6$
31 to 40
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41 to 50
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3+16$
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ 16*(3!-3)$
49: $13+36$
50: $ 63-13$
I added a few. It's getting late here; will come back tomorrow.
edited Jan 28 at 6:12
Omega Krypton
3,6941338
3,6941338
answered Jan 28 at 2:58
Brandon_JBrandon_J
1,28427
1,28427
add a comment |
add a comment |
$begingroup$
Expanding on Bass's answer, I added some new numbers.
(I lost track on which numbers I added, though 1-40 is all Bass)
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3 + 16 $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51: $ 16*3+3 $
52: $ 61 - 3times3$
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ (6times3+1)times3$
58: $ (1+3)^3-6$
59: $ 63 - 3 - 1$
60: $ (1+3times3)times6$
61: $ 63 - 3 + 1$
62: $ 63 - 1^3$
63: $ 63 * 1^3$
64: $ (1+3/3)^6$
65: $ 63 + 3 - 1$
66: $ 1 times (63 + 3) $
67: $ 63 + 3 + 1$
68: $ $
69: $ $
70: $ (1+3)^3+6 $
71: $ 6^3 / 3 - 1 $
72: $ (1+3)times 3 times 6$
73: $ 6^3 / 3 + 1 $
74: $ $
75: $ 3^(3+1) - 6$
76: $ 63+13 $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ 3^(3+1) + 6$
88: $ 61 + 3^3 $
89: $ $
90: $ $
91: $ $
92: $ $
93: $ $
94: $ 33 + 61 $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ 31times3+6$
100: $ $
Only need 41, 44, 46, 47, 50, 56, 68, 69, 74, 77, 79, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, and 100 now!
New contributor
$endgroup$
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
add a comment |
$begingroup$
Expanding on Bass's answer, I added some new numbers.
(I lost track on which numbers I added, though 1-40 is all Bass)
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3 + 16 $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51: $ 16*3+3 $
52: $ 61 - 3times3$
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ (6times3+1)times3$
58: $ (1+3)^3-6$
59: $ 63 - 3 - 1$
60: $ (1+3times3)times6$
61: $ 63 - 3 + 1$
62: $ 63 - 1^3$
63: $ 63 * 1^3$
64: $ (1+3/3)^6$
65: $ 63 + 3 - 1$
66: $ 1 times (63 + 3) $
67: $ 63 + 3 + 1$
68: $ $
69: $ $
70: $ (1+3)^3+6 $
71: $ 6^3 / 3 - 1 $
72: $ (1+3)times 3 times 6$
73: $ 6^3 / 3 + 1 $
74: $ $
75: $ 3^(3+1) - 6$
76: $ 63+13 $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ 3^(3+1) + 6$
88: $ 61 + 3^3 $
89: $ $
90: $ $
91: $ $
92: $ $
93: $ $
94: $ 33 + 61 $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ 31times3+6$
100: $ $
Only need 41, 44, 46, 47, 50, 56, 68, 69, 74, 77, 79, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, and 100 now!
New contributor
$endgroup$
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
add a comment |
$begingroup$
Expanding on Bass's answer, I added some new numbers.
(I lost track on which numbers I added, though 1-40 is all Bass)
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3 + 16 $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51: $ 16*3+3 $
52: $ 61 - 3times3$
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ (6times3+1)times3$
58: $ (1+3)^3-6$
59: $ 63 - 3 - 1$
60: $ (1+3times3)times6$
61: $ 63 - 3 + 1$
62: $ 63 - 1^3$
63: $ 63 * 1^3$
64: $ (1+3/3)^6$
65: $ 63 + 3 - 1$
66: $ 1 times (63 + 3) $
67: $ 63 + 3 + 1$
68: $ $
69: $ $
70: $ (1+3)^3+6 $
71: $ 6^3 / 3 - 1 $
72: $ (1+3)times 3 times 6$
73: $ 6^3 / 3 + 1 $
74: $ $
75: $ 3^(3+1) - 6$
76: $ 63+13 $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ 3^(3+1) + 6$
88: $ 61 + 3^3 $
89: $ $
90: $ $
91: $ $
92: $ $
93: $ $
94: $ 33 + 61 $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ 31times3+6$
100: $ $
Only need 41, 44, 46, 47, 50, 56, 68, 69, 74, 77, 79, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, and 100 now!
New contributor
$endgroup$
Expanding on Bass's answer, I added some new numbers.
(I lost track on which numbers I added, though 1-40 is all Bass)
1: $1 + 3 + 3 - 6$
2: $(1 + 3) times 3 / 6$
3: $1*3 * 3 - 6$
4: $13 - 3 - 6$
5: $-1^{33} +6$
6: $1times3-3+6$
7: $ 1 + 3 -3 +6$
8: $ 1+3/3 + 6$
9: $ 1^3 times (3+6)$
10: $ 1 + sqrt[3]3^6$
11: $ sqrt{1+3}+3+6$
12: $1times 3 + 3 + 6$
13: $1 + 3+3+6$
14: $-1 + 3times 3+6$
15: $-1times3 + 3times 6$
16: $1 - 3 + 3 times 6$
17: $ -1^3 +3times 6$
18: $ (1+3)*3+6 $
19: $13 + sqrt{36}$
20: $-1 + 3^3 - 6$
21: $ 1 * 3^3 - 6 $
22: $ 13 + 3 + 6$
23: $ -13+36 $
24: $ (1+3)timessqrt{36}$
25: $ 1 - 3 + sqrt3^6$
26: $ -1+33-6$
27: $ 1*33-6 $
28: $ 1+33-6$
29: $ -1 + 3 + sqrt3^6$
30: $ (-1+3+3)times 6$
31: $ 13+3*6 $
32: $ -1+3^3+6$
33: $ 13*3-6 $
34: $ 1+3^3+6$
35: $ -1+(3+3)times6 $
36: $ 1times(3+3)times 6$
37: $ 1^3+36$
38: $ sqrt{1+3}+36$
39: $ 1times3 + 36$
40: $ 1+33+6$
41: $ $
42: $ (1+3+3)times 6$
43: $ 3^3 + 16 $
44: $ $
45: $ 13times3+6$
46: $ $
47: $ $
48: $ (-1 + 3 times 3) times 6 $
49: $13+36$
50: $ $
51: $ 16*3+3 $
52: $ 61 - 3times3$
53: $ -1 +3 times 3 times 6$
54: $ 1times 3 times 3 times 6$
55: $ 1 + 3 times 3 times 6$
56: $ $
57: $ (6times3+1)times3$
58: $ (1+3)^3-6$
59: $ 63 - 3 - 1$
60: $ (1+3times3)times6$
61: $ 63 - 3 + 1$
62: $ 63 - 1^3$
63: $ 63 * 1^3$
64: $ (1+3/3)^6$
65: $ 63 + 3 - 1$
66: $ 1 times (63 + 3) $
67: $ 63 + 3 + 1$
68: $ $
69: $ $
70: $ (1+3)^3+6 $
71: $ 6^3 / 3 - 1 $
72: $ (1+3)times 3 times 6$
73: $ 6^3 / 3 + 1 $
74: $ $
75: $ 3^(3+1) - 6$
76: $ 63+13 $
77: $ $
78: $ 13 times sqrt{36}$
79: $ $
80: $ -1 + 3timessqrt3^6$
81: $ 1times3timessqrt3^6$
82: $ 1+3timessqrt3^6$
83: $ $
84: $ $
85: $ $
86: $ $
87: $ 3^(3+1) + 6$
88: $ 61 + 3^3 $
89: $ $
90: $ $
91: $ $
92: $ $
93: $ $
94: $ 33 + 61 $
95: $ $
96: $ (13+3)times6 $
97: $ $
98: $ $
99: $ 31times3+6$
100: $ $
Only need 41, 44, 46, 47, 50, 56, 68, 69, 74, 77, 79, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, and 100 now!
New contributor
edited Jan 30 at 3:49
New contributor
answered Jan 30 at 2:56
Embodiment of IgnoranceEmbodiment of Ignorance
1096
1096
New contributor
New contributor
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
add a comment |
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
$begingroup$
Wow that is A LOT of numbers
$endgroup$
– North
Jan 30 at 3:07
add a comment |
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f78918%2fcreate-all-numbers-from-1-100-using-1-3-3-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Can we combine the results of operations? For example, is $(1+3) | 36 = 436$ (where | indicates concatenation)
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
If we need to take a square root, is the two implied?
$endgroup$
– Hugh
Jan 27 at 22:14
1
$begingroup$
can we use factorial?
$endgroup$
– Omega Krypton
Jan 27 at 23:23
3
$begingroup$
Factorials are most likely out, but what about parentheses, unary minus (like starting with -1) and decimal points?
$endgroup$
– Bass
Jan 28 at 0:25
1
$begingroup$
If decimal is allowed then round would probably valid too?
$endgroup$
– Mukyuu
Jan 28 at 3:31