How to construct a circle that is tangent to three given semi- circles?












11















documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
begin{document}
begin{pspicture}[showgrid](-5,-5)(10,10)
psset{unit=2cm,PointSymbol=none,PointName=none}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}

end{pspicture}
end{document}


enter image description here



See the result from Asymptote(TranLeNam's code)



documentclass[border=5pt,varwidth]{standalone}
usepackage{asymptote}
begin{document}
begin{asy}
settings.outformat="pdf";
settings.prc=false;
settings.render=20;

unitsize(0.5cm);
import geometry;
defaultpen(fontsize(12pt));
pair A=(0,0), B=(8,0), C=(0,6);
draw(triangle(A,B,C));
pair CP=midpoint(A--B), BP=midpoint(A--C), AP=midpoint(C--B);
draw(arc(CP,A,B)^^arc(BP,C,A)^^arc(AP,B,C)) ;
inversion inv=inversion(20,A);
point AB=inv*B;
point AC=inv*C;
point AA=AB+AC;
circle cABC=excircle(AB,AC,AA);
draw(inv*cABC,red);
shipout(bbox(1mm,1mm+white));
end{asy}
end{document}


enter image description here



Of course it does not have center and radius!! It uses inversion which PSTricks does not have !?



I truly do not know how to draw it for PSTricks.



More detail, see http://mathworld.wolfram.com/Inversion.html and http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.html#struct%20inversion










share|improve this question




















  • 1





    ah! that was exactly my comment in your other question in its original formulation! since then I have determined the coordinates of all three points of tangency, of the center, and the radius in terms of a, b, c... good luck.

    – user4686
    Jan 28 at 9:38






  • 1





    notice that you have another remarkable circle which is tangent internally to big semi-circle and externally to the (non-drawn) other small half-semi-circles. You obtain it in the asy code by using inscribed rather than ex-scribed circle. (and using the two other exscribed circles you have in total 4 remarkable circles with the red one in your picture one of them)

    – user4686
    Jan 28 at 9:44













  • @jfbu Oh no, I simply want to know if PStricks has any syntax to draw like Asymptote. :-))

    – chishimotoji
    Jan 28 at 9:53








  • 1





    Yes that's good question (I don't know enough PSTricks to answer). The specific geometric problem here is something else (to which I devoted some hours over the last week-end to convert the construction (as you give in asy code) into explicit formulas... :) )

    – user4686
    Jan 28 at 9:54













  • @jfbu Oh, no problem, if you have any ways to solve my problem, feel free to post your solution. :-)

    – chishimotoji
    Jan 28 at 10:00
















11















documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
begin{document}
begin{pspicture}[showgrid](-5,-5)(10,10)
psset{unit=2cm,PointSymbol=none,PointName=none}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}

end{pspicture}
end{document}


enter image description here



See the result from Asymptote(TranLeNam's code)



documentclass[border=5pt,varwidth]{standalone}
usepackage{asymptote}
begin{document}
begin{asy}
settings.outformat="pdf";
settings.prc=false;
settings.render=20;

unitsize(0.5cm);
import geometry;
defaultpen(fontsize(12pt));
pair A=(0,0), B=(8,0), C=(0,6);
draw(triangle(A,B,C));
pair CP=midpoint(A--B), BP=midpoint(A--C), AP=midpoint(C--B);
draw(arc(CP,A,B)^^arc(BP,C,A)^^arc(AP,B,C)) ;
inversion inv=inversion(20,A);
point AB=inv*B;
point AC=inv*C;
point AA=AB+AC;
circle cABC=excircle(AB,AC,AA);
draw(inv*cABC,red);
shipout(bbox(1mm,1mm+white));
end{asy}
end{document}


enter image description here



Of course it does not have center and radius!! It uses inversion which PSTricks does not have !?



I truly do not know how to draw it for PSTricks.



More detail, see http://mathworld.wolfram.com/Inversion.html and http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.html#struct%20inversion










share|improve this question




















  • 1





    ah! that was exactly my comment in your other question in its original formulation! since then I have determined the coordinates of all three points of tangency, of the center, and the radius in terms of a, b, c... good luck.

    – user4686
    Jan 28 at 9:38






  • 1





    notice that you have another remarkable circle which is tangent internally to big semi-circle and externally to the (non-drawn) other small half-semi-circles. You obtain it in the asy code by using inscribed rather than ex-scribed circle. (and using the two other exscribed circles you have in total 4 remarkable circles with the red one in your picture one of them)

    – user4686
    Jan 28 at 9:44













  • @jfbu Oh no, I simply want to know if PStricks has any syntax to draw like Asymptote. :-))

    – chishimotoji
    Jan 28 at 9:53








  • 1





    Yes that's good question (I don't know enough PSTricks to answer). The specific geometric problem here is something else (to which I devoted some hours over the last week-end to convert the construction (as you give in asy code) into explicit formulas... :) )

    – user4686
    Jan 28 at 9:54













  • @jfbu Oh, no problem, if you have any ways to solve my problem, feel free to post your solution. :-)

    – chishimotoji
    Jan 28 at 10:00














11












11








11


1






documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
begin{document}
begin{pspicture}[showgrid](-5,-5)(10,10)
psset{unit=2cm,PointSymbol=none,PointName=none}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}

end{pspicture}
end{document}


enter image description here



See the result from Asymptote(TranLeNam's code)



documentclass[border=5pt,varwidth]{standalone}
usepackage{asymptote}
begin{document}
begin{asy}
settings.outformat="pdf";
settings.prc=false;
settings.render=20;

unitsize(0.5cm);
import geometry;
defaultpen(fontsize(12pt));
pair A=(0,0), B=(8,0), C=(0,6);
draw(triangle(A,B,C));
pair CP=midpoint(A--B), BP=midpoint(A--C), AP=midpoint(C--B);
draw(arc(CP,A,B)^^arc(BP,C,A)^^arc(AP,B,C)) ;
inversion inv=inversion(20,A);
point AB=inv*B;
point AC=inv*C;
point AA=AB+AC;
circle cABC=excircle(AB,AC,AA);
draw(inv*cABC,red);
shipout(bbox(1mm,1mm+white));
end{asy}
end{document}


enter image description here



Of course it does not have center and radius!! It uses inversion which PSTricks does not have !?



I truly do not know how to draw it for PSTricks.



More detail, see http://mathworld.wolfram.com/Inversion.html and http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.html#struct%20inversion










share|improve this question
















documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
begin{document}
begin{pspicture}[showgrid](-5,-5)(10,10)
psset{unit=2cm,PointSymbol=none,PointName=none}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}

end{pspicture}
end{document}


enter image description here



See the result from Asymptote(TranLeNam's code)



documentclass[border=5pt,varwidth]{standalone}
usepackage{asymptote}
begin{document}
begin{asy}
settings.outformat="pdf";
settings.prc=false;
settings.render=20;

unitsize(0.5cm);
import geometry;
defaultpen(fontsize(12pt));
pair A=(0,0), B=(8,0), C=(0,6);
draw(triangle(A,B,C));
pair CP=midpoint(A--B), BP=midpoint(A--C), AP=midpoint(C--B);
draw(arc(CP,A,B)^^arc(BP,C,A)^^arc(AP,B,C)) ;
inversion inv=inversion(20,A);
point AB=inv*B;
point AC=inv*C;
point AA=AB+AC;
circle cABC=excircle(AB,AC,AA);
draw(inv*cABC,red);
shipout(bbox(1mm,1mm+white));
end{asy}
end{document}


enter image description here



Of course it does not have center and radius!! It uses inversion which PSTricks does not have !?



I truly do not know how to draw it for PSTricks.



More detail, see http://mathworld.wolfram.com/Inversion.html and http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.html#struct%20inversion







pstricks asymptote






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 28 at 12:07









Artificial Stupidity

5,50011040




5,50011040










asked Jan 28 at 8:22









chishimotojichishimotoji

801320




801320








  • 1





    ah! that was exactly my comment in your other question in its original formulation! since then I have determined the coordinates of all three points of tangency, of the center, and the radius in terms of a, b, c... good luck.

    – user4686
    Jan 28 at 9:38






  • 1





    notice that you have another remarkable circle which is tangent internally to big semi-circle and externally to the (non-drawn) other small half-semi-circles. You obtain it in the asy code by using inscribed rather than ex-scribed circle. (and using the two other exscribed circles you have in total 4 remarkable circles with the red one in your picture one of them)

    – user4686
    Jan 28 at 9:44













  • @jfbu Oh no, I simply want to know if PStricks has any syntax to draw like Asymptote. :-))

    – chishimotoji
    Jan 28 at 9:53








  • 1





    Yes that's good question (I don't know enough PSTricks to answer). The specific geometric problem here is something else (to which I devoted some hours over the last week-end to convert the construction (as you give in asy code) into explicit formulas... :) )

    – user4686
    Jan 28 at 9:54













  • @jfbu Oh, no problem, if you have any ways to solve my problem, feel free to post your solution. :-)

    – chishimotoji
    Jan 28 at 10:00














  • 1





    ah! that was exactly my comment in your other question in its original formulation! since then I have determined the coordinates of all three points of tangency, of the center, and the radius in terms of a, b, c... good luck.

    – user4686
    Jan 28 at 9:38






  • 1





    notice that you have another remarkable circle which is tangent internally to big semi-circle and externally to the (non-drawn) other small half-semi-circles. You obtain it in the asy code by using inscribed rather than ex-scribed circle. (and using the two other exscribed circles you have in total 4 remarkable circles with the red one in your picture one of them)

    – user4686
    Jan 28 at 9:44













  • @jfbu Oh no, I simply want to know if PStricks has any syntax to draw like Asymptote. :-))

    – chishimotoji
    Jan 28 at 9:53








  • 1





    Yes that's good question (I don't know enough PSTricks to answer). The specific geometric problem here is something else (to which I devoted some hours over the last week-end to convert the construction (as you give in asy code) into explicit formulas... :) )

    – user4686
    Jan 28 at 9:54













  • @jfbu Oh, no problem, if you have any ways to solve my problem, feel free to post your solution. :-)

    – chishimotoji
    Jan 28 at 10:00








1




1





ah! that was exactly my comment in your other question in its original formulation! since then I have determined the coordinates of all three points of tangency, of the center, and the radius in terms of a, b, c... good luck.

– user4686
Jan 28 at 9:38





ah! that was exactly my comment in your other question in its original formulation! since then I have determined the coordinates of all three points of tangency, of the center, and the radius in terms of a, b, c... good luck.

– user4686
Jan 28 at 9:38




1




1





notice that you have another remarkable circle which is tangent internally to big semi-circle and externally to the (non-drawn) other small half-semi-circles. You obtain it in the asy code by using inscribed rather than ex-scribed circle. (and using the two other exscribed circles you have in total 4 remarkable circles with the red one in your picture one of them)

– user4686
Jan 28 at 9:44







notice that you have another remarkable circle which is tangent internally to big semi-circle and externally to the (non-drawn) other small half-semi-circles. You obtain it in the asy code by using inscribed rather than ex-scribed circle. (and using the two other exscribed circles you have in total 4 remarkable circles with the red one in your picture one of them)

– user4686
Jan 28 at 9:44















@jfbu Oh no, I simply want to know if PStricks has any syntax to draw like Asymptote. :-))

– chishimotoji
Jan 28 at 9:53







@jfbu Oh no, I simply want to know if PStricks has any syntax to draw like Asymptote. :-))

– chishimotoji
Jan 28 at 9:53






1




1





Yes that's good question (I don't know enough PSTricks to answer). The specific geometric problem here is something else (to which I devoted some hours over the last week-end to convert the construction (as you give in asy code) into explicit formulas... :) )

– user4686
Jan 28 at 9:54







Yes that's good question (I don't know enough PSTricks to answer). The specific geometric problem here is something else (to which I devoted some hours over the last week-end to convert the construction (as you give in asy code) into explicit formulas... :) )

– user4686
Jan 28 at 9:54















@jfbu Oh, no problem, if you have any ways to solve my problem, feel free to post your solution. :-)

– chishimotoji
Jan 28 at 10:00





@jfbu Oh, no problem, if you have any ways to solve my problem, feel free to post your solution. :-)

– chishimotoji
Jan 28 at 10:00










3 Answers
3






active

oldest

votes


















14














Supposing that: A(0,0), B(b,0), C(0,c)



So AB is horizontal and AC is vertical we can calculate it. @jfbu did these calculations and I just implemented them into a PSTricks picture.



documentclass[pstricks,dvipsnames]{standalone}
usepackage{pst-eucl}

pagestyle{empty}

begin{document}

begin{pspicture}(-3,-3.5)(4.5,5.5)
pstVerb{%
%% Enter the coordinates of the points of the rectangled triangle
%% A(0,0), B(3,0), C(0,4)
%% So AB is horizontal
%% AC is vertical
/xA 0 def
/yA 0 def
/xB 3 def
/yB 0 def
/xC 0 def
/yC 4 def
%% Midpoints of the sides
/mAx xB xC add 2 div def
/mAy yB yC add 2 div def
/mBx xA xC add 2 div def
/mBy yA yC add 2 div def
/mCx xA xB add 2 div def
/mCy yA yB add 2 div def
%% Calculating the radius of the half circles along the sides of the
%% rectangled triangle
/rAB xA xB sub 2 exp yA yB sub 2 exp add sqrt 2 div def
/AB rAB 2 mul def
/rAC xA xC sub 2 exp yA yC sub 2 exp add sqrt 2 div def
/AC rAC 2 mul def
/rBC xB xC sub 2 exp yB yC sub 2 exp add sqrt 2 div def
/BC rBC 2 mul def
/DENOM BC 5 mul AB 3 mul add AC 3 mul add def
%% @JFBU formula
%% X = 2 AB (AB + BC) / (5 BC + 3 AB + 3 AC)
%% Y = 2 AC (AC + BC) / (5 BC + 3 AB + 3 AC)
%% R = 2 (BC + AB) (BC + AC) / (5 BC + 3 AB + 3 AC)
/x0 AB BC add AB mul 2 mul DENOM div def
/y0 AC BC add AC mul 2 mul DENOM div def
/r0 BC AB add BC AC add mul 2 mul DENOM div def
%% @JFBU formula for the tangent points
%% P1 = (2(a+c)c, -(a+b+c)c) / (3a + b + 2c)
%% P2 = (-(a+b+c)b, 2(a+b)b) / (3a + 2b + c)
%% P3 = ((a+b+c)(a+c), (a+b+c)(a+b))/ (3a + 2b + 2c)
/p1x BC AB add AB mul 2 mul BC 3 mul AC add AB 2 mul add div def
/p1y BC AC add AB add AB mul BC 3 mul AC add AB 2 mul add div neg def
/p2x BC AC add AB add AC mul BC 3 mul AC 2 mul add AB add div neg def
/p2y BC AC add AC mul 2 mul BC 3 mul AC 2 mul add AB add div def
/p3x BC AC add AB add BC AB add mul BC 3 mul AC 2 mul add AB 2 mul add div def
/p3y BC AC add AB add BC AC add mul BC 3 mul AC 2 mul add AB 2 mul add div def
}
%% Setting the nodes of the points of the triangle
pstGeonode[PointSymbol=none,PosAngle={225,-45,90}](!xA yA){A}(!xB yB){B}(!xC yC){C}
pspolygon[linecolor=blue,linejoin=1](A)(B)(C)
%% Setting the nodes of the midpoints of the triangle sides
pstMiddleAB[PointSymbol=none,PointName=none]{A}{B}{MAB}
pstMiddleAB[PointSymbol=none,PointName=none]{A}{C}{MAC}
pstMiddleAB[PointSymbol=none,PointName=none]{B}{C}{MBC}
%% Full circles along the sides of the triangle (not needed!)
%pscircle(MAB){!rAB}
%pscircle(MAC){!rAC}
%pscircle(MBC){!rBC}
%% Drawing the half circles along the sides of the triangle
pstArcOAB[linecolor=lightgray]{MAB}{A}{B}
pstArcOAB[linecolor=lightgray]{MAC}{C}{A}
pstArcOAB[linecolor=lightgray]{MBC}{B}{C}
%% circle and tangent points
pnode(!x0 y0){O}
pnode(!p1x p1y){P1}
pnode(!p2x p2y){P2}
pnode(!p3x p3y){P3}
pscircle[linecolor=Green](O){!r0}
psdot[linecolor=red](P1)uput[-90](P1){$P_1$}
psdot[linecolor=red](P2)uput[180](P2){$P_2$}
psdot[linecolor=red](P3)uput[90](P3){$P_3$}
pspolygon[linejoin=1,linecolor=red,linewidth=0.5pt](P1)(P2)(P3)
end{pspicture}
end{document}


enter image description here



Hope this answers the question.



As an animated gif:



enter image description here






share|improve this answer





















  • 2





    Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

    – AlexG
    Jan 28 at 10:12











  • @AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

    – user151328
    Jan 28 at 10:13











  • Amenable to a nice animation, perhaps?

    – AlexG
    Jan 28 at 10:15











  • hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

    – user4686
    Jan 28 at 10:26



















7














For a triangle with a right angle:



documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
defpstInvCircle#1#2#3#4{%
pnode(!
psGetNodeCenter{#1}
psGetNodeCenter{#2}psGetNodeCenter{#3}
#2.x #1.x sub #2.y #1.y sub Pyth /l12 ED
#2.x #1.x sub #2.y #1.y sub #3.x #1.x sub #3.y #1.y sub Pyth2 /l23 ED
#3.x #1.x sub #3.y #1.y sub Pyth /l31 ED
l23 5 mul l12 3 mul add l31 3 mul add /Denom ED
l12 l23 add l12 mul 2 mul Denom div /xM ED
l31 l23 add l31 mul 2 mul Denom div /yM ED
l23 l12 add l23 l31 add mul 2 mul Denom div /rM ED
xM yM ){#4}%
pscircle[linecolor=red,linewidth=2pt,dimen=inner](#4){! rM }%
}
begin{document}
psset{unit=2}
begin{pspicture}[showgrid](-2,-2)(4,5)
psset{PointSymbol=none,PointName=none,dimen=inner,opacity=0.5}
pstTriangle[linecolor=blue,linewidth=2pt,linejoin=2](0,0){A}(3,0){B}(0,4){C}
pstMiddleAB{A}{B}{I1} pstArcOAB[fillstyle=solid,fillcolor=red!40]{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB[fillstyle=solid,fillcolor=blue!40]{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB[fillstyle=solid,fillcolor=green!40]{I3}{C}{A}
psset{linecolor=red,linewidth=2pt,dimen=inner}
pstInvCircle{A}{B}{C}{O}
psdot(O)
end{pspicture}
end{document}


enter image description here






share|improve this answer


























  • Wow!!! What an approach!!!

    – user151328
    Jan 28 at 11:06



















3














One possible way/starting point (but not accurate here) is to use something like this:



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}

usepackage{pst-eucl}
begin{document}
begin{pspicture}(-5,-5)(5,5)
pstTriangle[PointSymbol=none, PointName={A,B,A}](4,1){A}(1,3){B}(5,5){C}
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{A}{B}{C}{O}
end{pspicture}
end{document}


to get:



enter image description here



Here you basically define (atleast) three-points in space and let the circle pass through them.



Update 1:



To get the desired results, define some pseudo points (as in the so-called Bezier's trick and 3 tangential points on the circle as in



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}
%usepackage{pst-solides3d}
% https://tex.stackexchange.com/questions/7199/can-pstricks-or-others-draw-the-4-common-tangent-lines-of-2-disjoint-circles-w --> some help from Herbert's solution!
usepackage{pst-eucl}
begin{document}
begin{pspicture}
%set a few nodes at desired locations and employ the Bezier trick
pnodes(-1.8,2){M1}(3,4.2){M2}(2,-1.5){M3}(-1.7, 3){M4}
psdots(M1)(M2)(M3)
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{M1}{M2}{M3}{M4}{O}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}
end{pspicture}

end{document}


to get:



enter image description here



PS: Of course this solution is not sophisticated, but this can be achieved without too much calculations or whatsoever. Only, some trial-and-error to place the points is required.






share|improve this answer


























  • Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

    – chishimotoji
    Jan 28 at 9:33













  • @Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

    – Raaja
    Jan 28 at 9:54











  • Yes, I updated it.

    – chishimotoji
    Jan 28 at 9:57











Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f472186%2fhow-to-construct-a-circle-that-is-tangent-to-three-given-semi-circles%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









14














Supposing that: A(0,0), B(b,0), C(0,c)



So AB is horizontal and AC is vertical we can calculate it. @jfbu did these calculations and I just implemented them into a PSTricks picture.



documentclass[pstricks,dvipsnames]{standalone}
usepackage{pst-eucl}

pagestyle{empty}

begin{document}

begin{pspicture}(-3,-3.5)(4.5,5.5)
pstVerb{%
%% Enter the coordinates of the points of the rectangled triangle
%% A(0,0), B(3,0), C(0,4)
%% So AB is horizontal
%% AC is vertical
/xA 0 def
/yA 0 def
/xB 3 def
/yB 0 def
/xC 0 def
/yC 4 def
%% Midpoints of the sides
/mAx xB xC add 2 div def
/mAy yB yC add 2 div def
/mBx xA xC add 2 div def
/mBy yA yC add 2 div def
/mCx xA xB add 2 div def
/mCy yA yB add 2 div def
%% Calculating the radius of the half circles along the sides of the
%% rectangled triangle
/rAB xA xB sub 2 exp yA yB sub 2 exp add sqrt 2 div def
/AB rAB 2 mul def
/rAC xA xC sub 2 exp yA yC sub 2 exp add sqrt 2 div def
/AC rAC 2 mul def
/rBC xB xC sub 2 exp yB yC sub 2 exp add sqrt 2 div def
/BC rBC 2 mul def
/DENOM BC 5 mul AB 3 mul add AC 3 mul add def
%% @JFBU formula
%% X = 2 AB (AB + BC) / (5 BC + 3 AB + 3 AC)
%% Y = 2 AC (AC + BC) / (5 BC + 3 AB + 3 AC)
%% R = 2 (BC + AB) (BC + AC) / (5 BC + 3 AB + 3 AC)
/x0 AB BC add AB mul 2 mul DENOM div def
/y0 AC BC add AC mul 2 mul DENOM div def
/r0 BC AB add BC AC add mul 2 mul DENOM div def
%% @JFBU formula for the tangent points
%% P1 = (2(a+c)c, -(a+b+c)c) / (3a + b + 2c)
%% P2 = (-(a+b+c)b, 2(a+b)b) / (3a + 2b + c)
%% P3 = ((a+b+c)(a+c), (a+b+c)(a+b))/ (3a + 2b + 2c)
/p1x BC AB add AB mul 2 mul BC 3 mul AC add AB 2 mul add div def
/p1y BC AC add AB add AB mul BC 3 mul AC add AB 2 mul add div neg def
/p2x BC AC add AB add AC mul BC 3 mul AC 2 mul add AB add div neg def
/p2y BC AC add AC mul 2 mul BC 3 mul AC 2 mul add AB add div def
/p3x BC AC add AB add BC AB add mul BC 3 mul AC 2 mul add AB 2 mul add div def
/p3y BC AC add AB add BC AC add mul BC 3 mul AC 2 mul add AB 2 mul add div def
}
%% Setting the nodes of the points of the triangle
pstGeonode[PointSymbol=none,PosAngle={225,-45,90}](!xA yA){A}(!xB yB){B}(!xC yC){C}
pspolygon[linecolor=blue,linejoin=1](A)(B)(C)
%% Setting the nodes of the midpoints of the triangle sides
pstMiddleAB[PointSymbol=none,PointName=none]{A}{B}{MAB}
pstMiddleAB[PointSymbol=none,PointName=none]{A}{C}{MAC}
pstMiddleAB[PointSymbol=none,PointName=none]{B}{C}{MBC}
%% Full circles along the sides of the triangle (not needed!)
%pscircle(MAB){!rAB}
%pscircle(MAC){!rAC}
%pscircle(MBC){!rBC}
%% Drawing the half circles along the sides of the triangle
pstArcOAB[linecolor=lightgray]{MAB}{A}{B}
pstArcOAB[linecolor=lightgray]{MAC}{C}{A}
pstArcOAB[linecolor=lightgray]{MBC}{B}{C}
%% circle and tangent points
pnode(!x0 y0){O}
pnode(!p1x p1y){P1}
pnode(!p2x p2y){P2}
pnode(!p3x p3y){P3}
pscircle[linecolor=Green](O){!r0}
psdot[linecolor=red](P1)uput[-90](P1){$P_1$}
psdot[linecolor=red](P2)uput[180](P2){$P_2$}
psdot[linecolor=red](P3)uput[90](P3){$P_3$}
pspolygon[linejoin=1,linecolor=red,linewidth=0.5pt](P1)(P2)(P3)
end{pspicture}
end{document}


enter image description here



Hope this answers the question.



As an animated gif:



enter image description here






share|improve this answer





















  • 2





    Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

    – AlexG
    Jan 28 at 10:12











  • @AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

    – user151328
    Jan 28 at 10:13











  • Amenable to a nice animation, perhaps?

    – AlexG
    Jan 28 at 10:15











  • hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

    – user4686
    Jan 28 at 10:26
















14














Supposing that: A(0,0), B(b,0), C(0,c)



So AB is horizontal and AC is vertical we can calculate it. @jfbu did these calculations and I just implemented them into a PSTricks picture.



documentclass[pstricks,dvipsnames]{standalone}
usepackage{pst-eucl}

pagestyle{empty}

begin{document}

begin{pspicture}(-3,-3.5)(4.5,5.5)
pstVerb{%
%% Enter the coordinates of the points of the rectangled triangle
%% A(0,0), B(3,0), C(0,4)
%% So AB is horizontal
%% AC is vertical
/xA 0 def
/yA 0 def
/xB 3 def
/yB 0 def
/xC 0 def
/yC 4 def
%% Midpoints of the sides
/mAx xB xC add 2 div def
/mAy yB yC add 2 div def
/mBx xA xC add 2 div def
/mBy yA yC add 2 div def
/mCx xA xB add 2 div def
/mCy yA yB add 2 div def
%% Calculating the radius of the half circles along the sides of the
%% rectangled triangle
/rAB xA xB sub 2 exp yA yB sub 2 exp add sqrt 2 div def
/AB rAB 2 mul def
/rAC xA xC sub 2 exp yA yC sub 2 exp add sqrt 2 div def
/AC rAC 2 mul def
/rBC xB xC sub 2 exp yB yC sub 2 exp add sqrt 2 div def
/BC rBC 2 mul def
/DENOM BC 5 mul AB 3 mul add AC 3 mul add def
%% @JFBU formula
%% X = 2 AB (AB + BC) / (5 BC + 3 AB + 3 AC)
%% Y = 2 AC (AC + BC) / (5 BC + 3 AB + 3 AC)
%% R = 2 (BC + AB) (BC + AC) / (5 BC + 3 AB + 3 AC)
/x0 AB BC add AB mul 2 mul DENOM div def
/y0 AC BC add AC mul 2 mul DENOM div def
/r0 BC AB add BC AC add mul 2 mul DENOM div def
%% @JFBU formula for the tangent points
%% P1 = (2(a+c)c, -(a+b+c)c) / (3a + b + 2c)
%% P2 = (-(a+b+c)b, 2(a+b)b) / (3a + 2b + c)
%% P3 = ((a+b+c)(a+c), (a+b+c)(a+b))/ (3a + 2b + 2c)
/p1x BC AB add AB mul 2 mul BC 3 mul AC add AB 2 mul add div def
/p1y BC AC add AB add AB mul BC 3 mul AC add AB 2 mul add div neg def
/p2x BC AC add AB add AC mul BC 3 mul AC 2 mul add AB add div neg def
/p2y BC AC add AC mul 2 mul BC 3 mul AC 2 mul add AB add div def
/p3x BC AC add AB add BC AB add mul BC 3 mul AC 2 mul add AB 2 mul add div def
/p3y BC AC add AB add BC AC add mul BC 3 mul AC 2 mul add AB 2 mul add div def
}
%% Setting the nodes of the points of the triangle
pstGeonode[PointSymbol=none,PosAngle={225,-45,90}](!xA yA){A}(!xB yB){B}(!xC yC){C}
pspolygon[linecolor=blue,linejoin=1](A)(B)(C)
%% Setting the nodes of the midpoints of the triangle sides
pstMiddleAB[PointSymbol=none,PointName=none]{A}{B}{MAB}
pstMiddleAB[PointSymbol=none,PointName=none]{A}{C}{MAC}
pstMiddleAB[PointSymbol=none,PointName=none]{B}{C}{MBC}
%% Full circles along the sides of the triangle (not needed!)
%pscircle(MAB){!rAB}
%pscircle(MAC){!rAC}
%pscircle(MBC){!rBC}
%% Drawing the half circles along the sides of the triangle
pstArcOAB[linecolor=lightgray]{MAB}{A}{B}
pstArcOAB[linecolor=lightgray]{MAC}{C}{A}
pstArcOAB[linecolor=lightgray]{MBC}{B}{C}
%% circle and tangent points
pnode(!x0 y0){O}
pnode(!p1x p1y){P1}
pnode(!p2x p2y){P2}
pnode(!p3x p3y){P3}
pscircle[linecolor=Green](O){!r0}
psdot[linecolor=red](P1)uput[-90](P1){$P_1$}
psdot[linecolor=red](P2)uput[180](P2){$P_2$}
psdot[linecolor=red](P3)uput[90](P3){$P_3$}
pspolygon[linejoin=1,linecolor=red,linewidth=0.5pt](P1)(P2)(P3)
end{pspicture}
end{document}


enter image description here



Hope this answers the question.



As an animated gif:



enter image description here






share|improve this answer





















  • 2





    Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

    – AlexG
    Jan 28 at 10:12











  • @AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

    – user151328
    Jan 28 at 10:13











  • Amenable to a nice animation, perhaps?

    – AlexG
    Jan 28 at 10:15











  • hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

    – user4686
    Jan 28 at 10:26














14












14








14







Supposing that: A(0,0), B(b,0), C(0,c)



So AB is horizontal and AC is vertical we can calculate it. @jfbu did these calculations and I just implemented them into a PSTricks picture.



documentclass[pstricks,dvipsnames]{standalone}
usepackage{pst-eucl}

pagestyle{empty}

begin{document}

begin{pspicture}(-3,-3.5)(4.5,5.5)
pstVerb{%
%% Enter the coordinates of the points of the rectangled triangle
%% A(0,0), B(3,0), C(0,4)
%% So AB is horizontal
%% AC is vertical
/xA 0 def
/yA 0 def
/xB 3 def
/yB 0 def
/xC 0 def
/yC 4 def
%% Midpoints of the sides
/mAx xB xC add 2 div def
/mAy yB yC add 2 div def
/mBx xA xC add 2 div def
/mBy yA yC add 2 div def
/mCx xA xB add 2 div def
/mCy yA yB add 2 div def
%% Calculating the radius of the half circles along the sides of the
%% rectangled triangle
/rAB xA xB sub 2 exp yA yB sub 2 exp add sqrt 2 div def
/AB rAB 2 mul def
/rAC xA xC sub 2 exp yA yC sub 2 exp add sqrt 2 div def
/AC rAC 2 mul def
/rBC xB xC sub 2 exp yB yC sub 2 exp add sqrt 2 div def
/BC rBC 2 mul def
/DENOM BC 5 mul AB 3 mul add AC 3 mul add def
%% @JFBU formula
%% X = 2 AB (AB + BC) / (5 BC + 3 AB + 3 AC)
%% Y = 2 AC (AC + BC) / (5 BC + 3 AB + 3 AC)
%% R = 2 (BC + AB) (BC + AC) / (5 BC + 3 AB + 3 AC)
/x0 AB BC add AB mul 2 mul DENOM div def
/y0 AC BC add AC mul 2 mul DENOM div def
/r0 BC AB add BC AC add mul 2 mul DENOM div def
%% @JFBU formula for the tangent points
%% P1 = (2(a+c)c, -(a+b+c)c) / (3a + b + 2c)
%% P2 = (-(a+b+c)b, 2(a+b)b) / (3a + 2b + c)
%% P3 = ((a+b+c)(a+c), (a+b+c)(a+b))/ (3a + 2b + 2c)
/p1x BC AB add AB mul 2 mul BC 3 mul AC add AB 2 mul add div def
/p1y BC AC add AB add AB mul BC 3 mul AC add AB 2 mul add div neg def
/p2x BC AC add AB add AC mul BC 3 mul AC 2 mul add AB add div neg def
/p2y BC AC add AC mul 2 mul BC 3 mul AC 2 mul add AB add div def
/p3x BC AC add AB add BC AB add mul BC 3 mul AC 2 mul add AB 2 mul add div def
/p3y BC AC add AB add BC AC add mul BC 3 mul AC 2 mul add AB 2 mul add div def
}
%% Setting the nodes of the points of the triangle
pstGeonode[PointSymbol=none,PosAngle={225,-45,90}](!xA yA){A}(!xB yB){B}(!xC yC){C}
pspolygon[linecolor=blue,linejoin=1](A)(B)(C)
%% Setting the nodes of the midpoints of the triangle sides
pstMiddleAB[PointSymbol=none,PointName=none]{A}{B}{MAB}
pstMiddleAB[PointSymbol=none,PointName=none]{A}{C}{MAC}
pstMiddleAB[PointSymbol=none,PointName=none]{B}{C}{MBC}
%% Full circles along the sides of the triangle (not needed!)
%pscircle(MAB){!rAB}
%pscircle(MAC){!rAC}
%pscircle(MBC){!rBC}
%% Drawing the half circles along the sides of the triangle
pstArcOAB[linecolor=lightgray]{MAB}{A}{B}
pstArcOAB[linecolor=lightgray]{MAC}{C}{A}
pstArcOAB[linecolor=lightgray]{MBC}{B}{C}
%% circle and tangent points
pnode(!x0 y0){O}
pnode(!p1x p1y){P1}
pnode(!p2x p2y){P2}
pnode(!p3x p3y){P3}
pscircle[linecolor=Green](O){!r0}
psdot[linecolor=red](P1)uput[-90](P1){$P_1$}
psdot[linecolor=red](P2)uput[180](P2){$P_2$}
psdot[linecolor=red](P3)uput[90](P3){$P_3$}
pspolygon[linejoin=1,linecolor=red,linewidth=0.5pt](P1)(P2)(P3)
end{pspicture}
end{document}


enter image description here



Hope this answers the question.



As an animated gif:



enter image description here






share|improve this answer















Supposing that: A(0,0), B(b,0), C(0,c)



So AB is horizontal and AC is vertical we can calculate it. @jfbu did these calculations and I just implemented them into a PSTricks picture.



documentclass[pstricks,dvipsnames]{standalone}
usepackage{pst-eucl}

pagestyle{empty}

begin{document}

begin{pspicture}(-3,-3.5)(4.5,5.5)
pstVerb{%
%% Enter the coordinates of the points of the rectangled triangle
%% A(0,0), B(3,0), C(0,4)
%% So AB is horizontal
%% AC is vertical
/xA 0 def
/yA 0 def
/xB 3 def
/yB 0 def
/xC 0 def
/yC 4 def
%% Midpoints of the sides
/mAx xB xC add 2 div def
/mAy yB yC add 2 div def
/mBx xA xC add 2 div def
/mBy yA yC add 2 div def
/mCx xA xB add 2 div def
/mCy yA yB add 2 div def
%% Calculating the radius of the half circles along the sides of the
%% rectangled triangle
/rAB xA xB sub 2 exp yA yB sub 2 exp add sqrt 2 div def
/AB rAB 2 mul def
/rAC xA xC sub 2 exp yA yC sub 2 exp add sqrt 2 div def
/AC rAC 2 mul def
/rBC xB xC sub 2 exp yB yC sub 2 exp add sqrt 2 div def
/BC rBC 2 mul def
/DENOM BC 5 mul AB 3 mul add AC 3 mul add def
%% @JFBU formula
%% X = 2 AB (AB + BC) / (5 BC + 3 AB + 3 AC)
%% Y = 2 AC (AC + BC) / (5 BC + 3 AB + 3 AC)
%% R = 2 (BC + AB) (BC + AC) / (5 BC + 3 AB + 3 AC)
/x0 AB BC add AB mul 2 mul DENOM div def
/y0 AC BC add AC mul 2 mul DENOM div def
/r0 BC AB add BC AC add mul 2 mul DENOM div def
%% @JFBU formula for the tangent points
%% P1 = (2(a+c)c, -(a+b+c)c) / (3a + b + 2c)
%% P2 = (-(a+b+c)b, 2(a+b)b) / (3a + 2b + c)
%% P3 = ((a+b+c)(a+c), (a+b+c)(a+b))/ (3a + 2b + 2c)
/p1x BC AB add AB mul 2 mul BC 3 mul AC add AB 2 mul add div def
/p1y BC AC add AB add AB mul BC 3 mul AC add AB 2 mul add div neg def
/p2x BC AC add AB add AC mul BC 3 mul AC 2 mul add AB add div neg def
/p2y BC AC add AC mul 2 mul BC 3 mul AC 2 mul add AB add div def
/p3x BC AC add AB add BC AB add mul BC 3 mul AC 2 mul add AB 2 mul add div def
/p3y BC AC add AB add BC AC add mul BC 3 mul AC 2 mul add AB 2 mul add div def
}
%% Setting the nodes of the points of the triangle
pstGeonode[PointSymbol=none,PosAngle={225,-45,90}](!xA yA){A}(!xB yB){B}(!xC yC){C}
pspolygon[linecolor=blue,linejoin=1](A)(B)(C)
%% Setting the nodes of the midpoints of the triangle sides
pstMiddleAB[PointSymbol=none,PointName=none]{A}{B}{MAB}
pstMiddleAB[PointSymbol=none,PointName=none]{A}{C}{MAC}
pstMiddleAB[PointSymbol=none,PointName=none]{B}{C}{MBC}
%% Full circles along the sides of the triangle (not needed!)
%pscircle(MAB){!rAB}
%pscircle(MAC){!rAC}
%pscircle(MBC){!rBC}
%% Drawing the half circles along the sides of the triangle
pstArcOAB[linecolor=lightgray]{MAB}{A}{B}
pstArcOAB[linecolor=lightgray]{MAC}{C}{A}
pstArcOAB[linecolor=lightgray]{MBC}{B}{C}
%% circle and tangent points
pnode(!x0 y0){O}
pnode(!p1x p1y){P1}
pnode(!p2x p2y){P2}
pnode(!p3x p3y){P3}
pscircle[linecolor=Green](O){!r0}
psdot[linecolor=red](P1)uput[-90](P1){$P_1$}
psdot[linecolor=red](P2)uput[180](P2){$P_2$}
psdot[linecolor=red](P3)uput[90](P3){$P_3$}
pspolygon[linejoin=1,linecolor=red,linewidth=0.5pt](P1)(P2)(P3)
end{pspicture}
end{document}


enter image description here



Hope this answers the question.



As an animated gif:



enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 28 at 10:41

























answered Jan 28 at 10:06







user151328















  • 2





    Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

    – AlexG
    Jan 28 at 10:12











  • @AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

    – user151328
    Jan 28 at 10:13











  • Amenable to a nice animation, perhaps?

    – AlexG
    Jan 28 at 10:15











  • hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

    – user4686
    Jan 28 at 10:26














  • 2





    Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

    – AlexG
    Jan 28 at 10:12











  • @AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

    – user151328
    Jan 28 at 10:13











  • Amenable to a nice animation, perhaps?

    – AlexG
    Jan 28 at 10:15











  • hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

    – user4686
    Jan 28 at 10:26








2




2





Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

– AlexG
Jan 28 at 10:12





Is it possible to find the big circle by compass-and-straight-edge construction, starting from the given triangle?

– AlexG
Jan 28 at 10:12













@AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

– user151328
Jan 28 at 10:13





@AlexG Yes it is. It is the Apollonius CCC problem. However that's quite a mess ...

– user151328
Jan 28 at 10:13













Amenable to a nice animation, perhaps?

– AlexG
Jan 28 at 10:15





Amenable to a nice animation, perhaps?

– AlexG
Jan 28 at 10:15













hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

– user4686
Jan 28 at 10:26





hi, it changes nothing, but regarding top of answer it is B=(c,0), C=(b,0), i.e. AB=c and AC=b as one sees you do in the postscript instruction.

– user4686
Jan 28 at 10:26











7














For a triangle with a right angle:



documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
defpstInvCircle#1#2#3#4{%
pnode(!
psGetNodeCenter{#1}
psGetNodeCenter{#2}psGetNodeCenter{#3}
#2.x #1.x sub #2.y #1.y sub Pyth /l12 ED
#2.x #1.x sub #2.y #1.y sub #3.x #1.x sub #3.y #1.y sub Pyth2 /l23 ED
#3.x #1.x sub #3.y #1.y sub Pyth /l31 ED
l23 5 mul l12 3 mul add l31 3 mul add /Denom ED
l12 l23 add l12 mul 2 mul Denom div /xM ED
l31 l23 add l31 mul 2 mul Denom div /yM ED
l23 l12 add l23 l31 add mul 2 mul Denom div /rM ED
xM yM ){#4}%
pscircle[linecolor=red,linewidth=2pt,dimen=inner](#4){! rM }%
}
begin{document}
psset{unit=2}
begin{pspicture}[showgrid](-2,-2)(4,5)
psset{PointSymbol=none,PointName=none,dimen=inner,opacity=0.5}
pstTriangle[linecolor=blue,linewidth=2pt,linejoin=2](0,0){A}(3,0){B}(0,4){C}
pstMiddleAB{A}{B}{I1} pstArcOAB[fillstyle=solid,fillcolor=red!40]{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB[fillstyle=solid,fillcolor=blue!40]{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB[fillstyle=solid,fillcolor=green!40]{I3}{C}{A}
psset{linecolor=red,linewidth=2pt,dimen=inner}
pstInvCircle{A}{B}{C}{O}
psdot(O)
end{pspicture}
end{document}


enter image description here






share|improve this answer


























  • Wow!!! What an approach!!!

    – user151328
    Jan 28 at 11:06
















7














For a triangle with a right angle:



documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
defpstInvCircle#1#2#3#4{%
pnode(!
psGetNodeCenter{#1}
psGetNodeCenter{#2}psGetNodeCenter{#3}
#2.x #1.x sub #2.y #1.y sub Pyth /l12 ED
#2.x #1.x sub #2.y #1.y sub #3.x #1.x sub #3.y #1.y sub Pyth2 /l23 ED
#3.x #1.x sub #3.y #1.y sub Pyth /l31 ED
l23 5 mul l12 3 mul add l31 3 mul add /Denom ED
l12 l23 add l12 mul 2 mul Denom div /xM ED
l31 l23 add l31 mul 2 mul Denom div /yM ED
l23 l12 add l23 l31 add mul 2 mul Denom div /rM ED
xM yM ){#4}%
pscircle[linecolor=red,linewidth=2pt,dimen=inner](#4){! rM }%
}
begin{document}
psset{unit=2}
begin{pspicture}[showgrid](-2,-2)(4,5)
psset{PointSymbol=none,PointName=none,dimen=inner,opacity=0.5}
pstTriangle[linecolor=blue,linewidth=2pt,linejoin=2](0,0){A}(3,0){B}(0,4){C}
pstMiddleAB{A}{B}{I1} pstArcOAB[fillstyle=solid,fillcolor=red!40]{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB[fillstyle=solid,fillcolor=blue!40]{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB[fillstyle=solid,fillcolor=green!40]{I3}{C}{A}
psset{linecolor=red,linewidth=2pt,dimen=inner}
pstInvCircle{A}{B}{C}{O}
psdot(O)
end{pspicture}
end{document}


enter image description here






share|improve this answer


























  • Wow!!! What an approach!!!

    – user151328
    Jan 28 at 11:06














7












7








7







For a triangle with a right angle:



documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
defpstInvCircle#1#2#3#4{%
pnode(!
psGetNodeCenter{#1}
psGetNodeCenter{#2}psGetNodeCenter{#3}
#2.x #1.x sub #2.y #1.y sub Pyth /l12 ED
#2.x #1.x sub #2.y #1.y sub #3.x #1.x sub #3.y #1.y sub Pyth2 /l23 ED
#3.x #1.x sub #3.y #1.y sub Pyth /l31 ED
l23 5 mul l12 3 mul add l31 3 mul add /Denom ED
l12 l23 add l12 mul 2 mul Denom div /xM ED
l31 l23 add l31 mul 2 mul Denom div /yM ED
l23 l12 add l23 l31 add mul 2 mul Denom div /rM ED
xM yM ){#4}%
pscircle[linecolor=red,linewidth=2pt,dimen=inner](#4){! rM }%
}
begin{document}
psset{unit=2}
begin{pspicture}[showgrid](-2,-2)(4,5)
psset{PointSymbol=none,PointName=none,dimen=inner,opacity=0.5}
pstTriangle[linecolor=blue,linewidth=2pt,linejoin=2](0,0){A}(3,0){B}(0,4){C}
pstMiddleAB{A}{B}{I1} pstArcOAB[fillstyle=solid,fillcolor=red!40]{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB[fillstyle=solid,fillcolor=blue!40]{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB[fillstyle=solid,fillcolor=green!40]{I3}{C}{A}
psset{linecolor=red,linewidth=2pt,dimen=inner}
pstInvCircle{A}{B}{C}{O}
psdot(O)
end{pspicture}
end{document}


enter image description here






share|improve this answer















For a triangle with a right angle:



documentclass[border=15pt,pstricks,12pt]{standalone}
usepackage{pst-eucl}
defpstInvCircle#1#2#3#4{%
pnode(!
psGetNodeCenter{#1}
psGetNodeCenter{#2}psGetNodeCenter{#3}
#2.x #1.x sub #2.y #1.y sub Pyth /l12 ED
#2.x #1.x sub #2.y #1.y sub #3.x #1.x sub #3.y #1.y sub Pyth2 /l23 ED
#3.x #1.x sub #3.y #1.y sub Pyth /l31 ED
l23 5 mul l12 3 mul add l31 3 mul add /Denom ED
l12 l23 add l12 mul 2 mul Denom div /xM ED
l31 l23 add l31 mul 2 mul Denom div /yM ED
l23 l12 add l23 l31 add mul 2 mul Denom div /rM ED
xM yM ){#4}%
pscircle[linecolor=red,linewidth=2pt,dimen=inner](#4){! rM }%
}
begin{document}
psset{unit=2}
begin{pspicture}[showgrid](-2,-2)(4,5)
psset{PointSymbol=none,PointName=none,dimen=inner,opacity=0.5}
pstTriangle[linecolor=blue,linewidth=2pt,linejoin=2](0,0){A}(3,0){B}(0,4){C}
pstMiddleAB{A}{B}{I1} pstArcOAB[fillstyle=solid,fillcolor=red!40]{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB[fillstyle=solid,fillcolor=blue!40]{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB[fillstyle=solid,fillcolor=green!40]{I3}{C}{A}
psset{linecolor=red,linewidth=2pt,dimen=inner}
pstInvCircle{A}{B}{C}{O}
psdot(O)
end{pspicture}
end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 28 at 17:37

























answered Jan 28 at 10:38









HerbertHerbert

273k24412726




273k24412726













  • Wow!!! What an approach!!!

    – user151328
    Jan 28 at 11:06



















  • Wow!!! What an approach!!!

    – user151328
    Jan 28 at 11:06

















Wow!!! What an approach!!!

– user151328
Jan 28 at 11:06





Wow!!! What an approach!!!

– user151328
Jan 28 at 11:06











3














One possible way/starting point (but not accurate here) is to use something like this:



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}

usepackage{pst-eucl}
begin{document}
begin{pspicture}(-5,-5)(5,5)
pstTriangle[PointSymbol=none, PointName={A,B,A}](4,1){A}(1,3){B}(5,5){C}
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{A}{B}{C}{O}
end{pspicture}
end{document}


to get:



enter image description here



Here you basically define (atleast) three-points in space and let the circle pass through them.



Update 1:



To get the desired results, define some pseudo points (as in the so-called Bezier's trick and 3 tangential points on the circle as in



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}
%usepackage{pst-solides3d}
% https://tex.stackexchange.com/questions/7199/can-pstricks-or-others-draw-the-4-common-tangent-lines-of-2-disjoint-circles-w --> some help from Herbert's solution!
usepackage{pst-eucl}
begin{document}
begin{pspicture}
%set a few nodes at desired locations and employ the Bezier trick
pnodes(-1.8,2){M1}(3,4.2){M2}(2,-1.5){M3}(-1.7, 3){M4}
psdots(M1)(M2)(M3)
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{M1}{M2}{M3}{M4}{O}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}
end{pspicture}

end{document}


to get:



enter image description here



PS: Of course this solution is not sophisticated, but this can be achieved without too much calculations or whatsoever. Only, some trial-and-error to place the points is required.






share|improve this answer


























  • Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

    – chishimotoji
    Jan 28 at 9:33













  • @Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

    – Raaja
    Jan 28 at 9:54











  • Yes, I updated it.

    – chishimotoji
    Jan 28 at 9:57
















3














One possible way/starting point (but not accurate here) is to use something like this:



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}

usepackage{pst-eucl}
begin{document}
begin{pspicture}(-5,-5)(5,5)
pstTriangle[PointSymbol=none, PointName={A,B,A}](4,1){A}(1,3){B}(5,5){C}
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{A}{B}{C}{O}
end{pspicture}
end{document}


to get:



enter image description here



Here you basically define (atleast) three-points in space and let the circle pass through them.



Update 1:



To get the desired results, define some pseudo points (as in the so-called Bezier's trick and 3 tangential points on the circle as in



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}
%usepackage{pst-solides3d}
% https://tex.stackexchange.com/questions/7199/can-pstricks-or-others-draw-the-4-common-tangent-lines-of-2-disjoint-circles-w --> some help from Herbert's solution!
usepackage{pst-eucl}
begin{document}
begin{pspicture}
%set a few nodes at desired locations and employ the Bezier trick
pnodes(-1.8,2){M1}(3,4.2){M2}(2,-1.5){M3}(-1.7, 3){M4}
psdots(M1)(M2)(M3)
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{M1}{M2}{M3}{M4}{O}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}
end{pspicture}

end{document}


to get:



enter image description here



PS: Of course this solution is not sophisticated, but this can be achieved without too much calculations or whatsoever. Only, some trial-and-error to place the points is required.






share|improve this answer


























  • Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

    – chishimotoji
    Jan 28 at 9:33













  • @Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

    – Raaja
    Jan 28 at 9:54











  • Yes, I updated it.

    – chishimotoji
    Jan 28 at 9:57














3












3








3







One possible way/starting point (but not accurate here) is to use something like this:



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}

usepackage{pst-eucl}
begin{document}
begin{pspicture}(-5,-5)(5,5)
pstTriangle[PointSymbol=none, PointName={A,B,A}](4,1){A}(1,3){B}(5,5){C}
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{A}{B}{C}{O}
end{pspicture}
end{document}


to get:



enter image description here



Here you basically define (atleast) three-points in space and let the circle pass through them.



Update 1:



To get the desired results, define some pseudo points (as in the so-called Bezier's trick and 3 tangential points on the circle as in



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}
%usepackage{pst-solides3d}
% https://tex.stackexchange.com/questions/7199/can-pstricks-or-others-draw-the-4-common-tangent-lines-of-2-disjoint-circles-w --> some help from Herbert's solution!
usepackage{pst-eucl}
begin{document}
begin{pspicture}
%set a few nodes at desired locations and employ the Bezier trick
pnodes(-1.8,2){M1}(3,4.2){M2}(2,-1.5){M3}(-1.7, 3){M4}
psdots(M1)(M2)(M3)
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{M1}{M2}{M3}{M4}{O}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}
end{pspicture}

end{document}


to get:



enter image description here



PS: Of course this solution is not sophisticated, but this can be achieved without too much calculations or whatsoever. Only, some trial-and-error to place the points is required.






share|improve this answer















One possible way/starting point (but not accurate here) is to use something like this:



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}

usepackage{pst-eucl}
begin{document}
begin{pspicture}(-5,-5)(5,5)
pstTriangle[PointSymbol=none, PointName={A,B,A}](4,1){A}(1,3){B}(5,5){C}
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{A}{B}{C}{O}
end{pspicture}
end{document}


to get:



enter image description here



Here you basically define (atleast) three-points in space and let the circle pass through them.



Update 1:



To get the desired results, define some pseudo points (as in the so-called Bezier's trick and 3 tangential points on the circle as in



%&pdflatex
% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]
documentclass[a4paper, pdf, x11names]{standalone}
usepackage{pstricks}
usepackage{pstricks-add, auto-pst-pdf}
%usepackage{pst-solides3d}
% https://tex.stackexchange.com/questions/7199/can-pstricks-or-others-draw-the-4-common-tangent-lines-of-2-disjoint-circles-w --> some help from Herbert's solution!
usepackage{pst-eucl}
begin{document}
begin{pspicture}
%set a few nodes at desired locations and employ the Bezier trick
pnodes(-1.8,2){M1}(3,4.2){M2}(2,-1.5){M3}(-1.7, 3){M4}
psdots(M1)(M2)(M3)
pstCircleABC[CodeFig=true, CodeFigColor=white,linecolor=red, PointSymbol=none, PointName={}]{M1}{M2}{M3}{M4}{O}
pstTriangle(0,4){C}(0,0){A}(3,0){B}
pstMiddleAB{A}{B}{I1} pstArcOAB{I1}{A}{B}
pstMiddleAB{B}{C}{I2} pstArcOAB{I2}{B}{C}
pstMiddleAB{C}{A}{I3} pstArcOAB{I3}{C}{A}
end{pspicture}

end{document}


to get:



enter image description here



PS: Of course this solution is not sophisticated, but this can be achieved without too much calculations or whatsoever. Only, some trial-and-error to place the points is required.







share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 28 at 10:28

























answered Jan 28 at 9:20









RaajaRaaja

3,25521037




3,25521037













  • Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

    – chishimotoji
    Jan 28 at 9:33













  • @Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

    – Raaja
    Jan 28 at 9:54











  • Yes, I updated it.

    – chishimotoji
    Jan 28 at 9:57



















  • Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

    – chishimotoji
    Jan 28 at 9:33













  • @Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

    – Raaja
    Jan 28 at 9:54











  • Yes, I updated it.

    – chishimotoji
    Jan 28 at 9:57

















Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

– chishimotoji
Jan 28 at 9:33







Seem you misunderstood my idea. I want to draw a circle " tangent " and of course without center and radius...

– chishimotoji
Jan 28 at 9:33















@Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

– Raaja
Jan 28 at 9:54





@Chishimotoji Ohhh, I am sorry. Could you update your question accordingly. I could not get understand that straightaway from your question.

– Raaja
Jan 28 at 9:54













Yes, I updated it.

– chishimotoji
Jan 28 at 9:57





Yes, I updated it.

– chishimotoji
Jan 28 at 9:57


















draft saved

draft discarded




















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f472186%2fhow-to-construct-a-circle-that-is-tangent-to-three-given-semi-circles%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents