Prove the norm of operator derived from orthogonal projections is less or equal to 1
$begingroup$
Suppose $H$ is a Hilbert space. We have two orthogonal projections $P_1: Hrightarrow A_1$ and $P_2: Hrightarrow A_2$. Here $A_1$ and $A_2$ are two closed subspace of $H$. Prove that
$$
lVert P_1 - P_2rVert le 1
$$
Any hints may help. Thank you.
linear-algebra functional-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $H$ is a Hilbert space. We have two orthogonal projections $P_1: Hrightarrow A_1$ and $P_2: Hrightarrow A_2$. Here $A_1$ and $A_2$ are two closed subspace of $H$. Prove that
$$
lVert P_1 - P_2rVert le 1
$$
Any hints may help. Thank you.
linear-algebra functional-analysis
$endgroup$
add a comment |
$begingroup$
Suppose $H$ is a Hilbert space. We have two orthogonal projections $P_1: Hrightarrow A_1$ and $P_2: Hrightarrow A_2$. Here $A_1$ and $A_2$ are two closed subspace of $H$. Prove that
$$
lVert P_1 - P_2rVert le 1
$$
Any hints may help. Thank you.
linear-algebra functional-analysis
$endgroup$
Suppose $H$ is a Hilbert space. We have two orthogonal projections $P_1: Hrightarrow A_1$ and $P_2: Hrightarrow A_2$. Here $A_1$ and $A_2$ are two closed subspace of $H$. Prove that
$$
lVert P_1 - P_2rVert le 1
$$
Any hints may help. Thank you.
linear-algebra functional-analysis
linear-algebra functional-analysis
asked Dec 3 '18 at 21:55
SyuizenSyuizen
934411
934411
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
HINT:
Note that it suffices to show that for any orthogonal projection $P$ on $H$, then $|P-frac{1}{2}I|=frac{1}{2}$ or $|2P-I|=1$, where $I$ is the identity operator on $H$. To show this, note that $2P-I$ is a unitary.
$endgroup$
add a comment |
$begingroup$
You can write $A_1 = B_1oplus (A_1cap A_2)$ and $A_2=B_2oplus(A_1cap A_2)$ where $oplus$ is an orthogonal decomposition. Then
$$
P_{A_1}=P_{B_1}+P_{A_1cap A_2}\
P_{A_2}=P_{B_2}+P_{A_1cap A_2},
$$
where the $P_{X}$ is the orthogonal projection onto $X$. So
$$
P_{A_1}-P_{A_2}=P_{B_1}-P_{B_2}.
$$
Because $B_1perp B_2$, it is easy to see that $|P_{B_1}-P_{B_2}|le 1$ because
$$
|P_{B_1}x-P_{B_2}x|^2=|P_{B_1}x|^2+|P_{B_1}x|^2=|P_{B_1oplus B_2}x|^2le |x|^2.
$$
$endgroup$
1
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
add a comment |
$begingroup$
For any $xin H$ with $|x|=1$, we have for an orthogonal projection $P$ $$langle Px,xrangle=langle P^*Px,xrangle=langle Px,Pxrangle=|Px|^2leq |Px|^2+|(I-P)x|^2=|x|^2=1.$$
So
$$
langle (P_1-P_2)x,xrangle=langle P_1x,xrangle-langle P_2x,xranglein[-1,1],
$$
since is it a difference of two numbers each in $[0,1]$.
For any selfadjoint operator $T$, we have $|T|=sup{|langle Tx,xrangle: |x|=1}$. So
$$
|P_1-P_2|=sup{|langle (P_1-P_2)x,xrangle|: |x|=1}leq1.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024739%2fprove-the-norm-of-operator-derived-from-orthogonal-projections-is-less-or-equal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINT:
Note that it suffices to show that for any orthogonal projection $P$ on $H$, then $|P-frac{1}{2}I|=frac{1}{2}$ or $|2P-I|=1$, where $I$ is the identity operator on $H$. To show this, note that $2P-I$ is a unitary.
$endgroup$
add a comment |
$begingroup$
HINT:
Note that it suffices to show that for any orthogonal projection $P$ on $H$, then $|P-frac{1}{2}I|=frac{1}{2}$ or $|2P-I|=1$, where $I$ is the identity operator on $H$. To show this, note that $2P-I$ is a unitary.
$endgroup$
add a comment |
$begingroup$
HINT:
Note that it suffices to show that for any orthogonal projection $P$ on $H$, then $|P-frac{1}{2}I|=frac{1}{2}$ or $|2P-I|=1$, where $I$ is the identity operator on $H$. To show this, note that $2P-I$ is a unitary.
$endgroup$
HINT:
Note that it suffices to show that for any orthogonal projection $P$ on $H$, then $|P-frac{1}{2}I|=frac{1}{2}$ or $|2P-I|=1$, where $I$ is the identity operator on $H$. To show this, note that $2P-I$ is a unitary.
answered Dec 3 '18 at 23:02
AweyganAweygan
14.3k21441
14.3k21441
add a comment |
add a comment |
$begingroup$
You can write $A_1 = B_1oplus (A_1cap A_2)$ and $A_2=B_2oplus(A_1cap A_2)$ where $oplus$ is an orthogonal decomposition. Then
$$
P_{A_1}=P_{B_1}+P_{A_1cap A_2}\
P_{A_2}=P_{B_2}+P_{A_1cap A_2},
$$
where the $P_{X}$ is the orthogonal projection onto $X$. So
$$
P_{A_1}-P_{A_2}=P_{B_1}-P_{B_2}.
$$
Because $B_1perp B_2$, it is easy to see that $|P_{B_1}-P_{B_2}|le 1$ because
$$
|P_{B_1}x-P_{B_2}x|^2=|P_{B_1}x|^2+|P_{B_1}x|^2=|P_{B_1oplus B_2}x|^2le |x|^2.
$$
$endgroup$
1
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
add a comment |
$begingroup$
You can write $A_1 = B_1oplus (A_1cap A_2)$ and $A_2=B_2oplus(A_1cap A_2)$ where $oplus$ is an orthogonal decomposition. Then
$$
P_{A_1}=P_{B_1}+P_{A_1cap A_2}\
P_{A_2}=P_{B_2}+P_{A_1cap A_2},
$$
where the $P_{X}$ is the orthogonal projection onto $X$. So
$$
P_{A_1}-P_{A_2}=P_{B_1}-P_{B_2}.
$$
Because $B_1perp B_2$, it is easy to see that $|P_{B_1}-P_{B_2}|le 1$ because
$$
|P_{B_1}x-P_{B_2}x|^2=|P_{B_1}x|^2+|P_{B_1}x|^2=|P_{B_1oplus B_2}x|^2le |x|^2.
$$
$endgroup$
1
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
add a comment |
$begingroup$
You can write $A_1 = B_1oplus (A_1cap A_2)$ and $A_2=B_2oplus(A_1cap A_2)$ where $oplus$ is an orthogonal decomposition. Then
$$
P_{A_1}=P_{B_1}+P_{A_1cap A_2}\
P_{A_2}=P_{B_2}+P_{A_1cap A_2},
$$
where the $P_{X}$ is the orthogonal projection onto $X$. So
$$
P_{A_1}-P_{A_2}=P_{B_1}-P_{B_2}.
$$
Because $B_1perp B_2$, it is easy to see that $|P_{B_1}-P_{B_2}|le 1$ because
$$
|P_{B_1}x-P_{B_2}x|^2=|P_{B_1}x|^2+|P_{B_1}x|^2=|P_{B_1oplus B_2}x|^2le |x|^2.
$$
$endgroup$
You can write $A_1 = B_1oplus (A_1cap A_2)$ and $A_2=B_2oplus(A_1cap A_2)$ where $oplus$ is an orthogonal decomposition. Then
$$
P_{A_1}=P_{B_1}+P_{A_1cap A_2}\
P_{A_2}=P_{B_2}+P_{A_1cap A_2},
$$
where the $P_{X}$ is the orthogonal projection onto $X$. So
$$
P_{A_1}-P_{A_2}=P_{B_1}-P_{B_2}.
$$
Because $B_1perp B_2$, it is easy to see that $|P_{B_1}-P_{B_2}|le 1$ because
$$
|P_{B_1}x-P_{B_2}x|^2=|P_{B_1}x|^2+|P_{B_1}x|^2=|P_{B_1oplus B_2}x|^2le |x|^2.
$$
answered Dec 3 '18 at 23:03
DisintegratingByPartsDisintegratingByParts
59.5k42580
59.5k42580
1
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
add a comment |
1
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
1
1
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
$begingroup$
Why does $B_1perp B_2$ hold?
$endgroup$
– Syuizen
Dec 4 '18 at 14:27
add a comment |
$begingroup$
For any $xin H$ with $|x|=1$, we have for an orthogonal projection $P$ $$langle Px,xrangle=langle P^*Px,xrangle=langle Px,Pxrangle=|Px|^2leq |Px|^2+|(I-P)x|^2=|x|^2=1.$$
So
$$
langle (P_1-P_2)x,xrangle=langle P_1x,xrangle-langle P_2x,xranglein[-1,1],
$$
since is it a difference of two numbers each in $[0,1]$.
For any selfadjoint operator $T$, we have $|T|=sup{|langle Tx,xrangle: |x|=1}$. So
$$
|P_1-P_2|=sup{|langle (P_1-P_2)x,xrangle|: |x|=1}leq1.
$$
$endgroup$
add a comment |
$begingroup$
For any $xin H$ with $|x|=1$, we have for an orthogonal projection $P$ $$langle Px,xrangle=langle P^*Px,xrangle=langle Px,Pxrangle=|Px|^2leq |Px|^2+|(I-P)x|^2=|x|^2=1.$$
So
$$
langle (P_1-P_2)x,xrangle=langle P_1x,xrangle-langle P_2x,xranglein[-1,1],
$$
since is it a difference of two numbers each in $[0,1]$.
For any selfadjoint operator $T$, we have $|T|=sup{|langle Tx,xrangle: |x|=1}$. So
$$
|P_1-P_2|=sup{|langle (P_1-P_2)x,xrangle|: |x|=1}leq1.
$$
$endgroup$
add a comment |
$begingroup$
For any $xin H$ with $|x|=1$, we have for an orthogonal projection $P$ $$langle Px,xrangle=langle P^*Px,xrangle=langle Px,Pxrangle=|Px|^2leq |Px|^2+|(I-P)x|^2=|x|^2=1.$$
So
$$
langle (P_1-P_2)x,xrangle=langle P_1x,xrangle-langle P_2x,xranglein[-1,1],
$$
since is it a difference of two numbers each in $[0,1]$.
For any selfadjoint operator $T$, we have $|T|=sup{|langle Tx,xrangle: |x|=1}$. So
$$
|P_1-P_2|=sup{|langle (P_1-P_2)x,xrangle|: |x|=1}leq1.
$$
$endgroup$
For any $xin H$ with $|x|=1$, we have for an orthogonal projection $P$ $$langle Px,xrangle=langle P^*Px,xrangle=langle Px,Pxrangle=|Px|^2leq |Px|^2+|(I-P)x|^2=|x|^2=1.$$
So
$$
langle (P_1-P_2)x,xrangle=langle P_1x,xrangle-langle P_2x,xranglein[-1,1],
$$
since is it a difference of two numbers each in $[0,1]$.
For any selfadjoint operator $T$, we have $|T|=sup{|langle Tx,xrangle: |x|=1}$. So
$$
|P_1-P_2|=sup{|langle (P_1-P_2)x,xrangle|: |x|=1}leq1.
$$
answered Dec 4 '18 at 1:59
Martin ArgeramiMartin Argerami
127k1182183
127k1182183
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024739%2fprove-the-norm-of-operator-derived-from-orthogonal-projections-is-less-or-equal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown