How to show that...
$begingroup$
Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$
In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$
I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?
complex-analysis radicals
$endgroup$
add a comment |
$begingroup$
Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$
In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$
I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?
complex-analysis radicals
$endgroup$
4
$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31
$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37
add a comment |
$begingroup$
Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$
In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$
I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?
complex-analysis radicals
$endgroup$
Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$
In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$
I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?
complex-analysis radicals
complex-analysis radicals
asked Dec 2 '18 at 16:26
LarryLarry
2,40131129
2,40131129
4
$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31
$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37
add a comment |
4
$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31
$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37
4
4
$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31
$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31
$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37
$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw
$$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$
Then back to Cartesian coordinates,
$$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
z&=1+ni,~r=sqrt{n^2+1}\
1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
&= sqrt{n^2+1}e^{itan^{-1}(n)}\
sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022841%2fhow-to-show-that-sqrt1ni-sqrt4n21-cos-left-frac12-tan-1n-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw
$$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$
Then back to Cartesian coordinates,
$$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$
$endgroup$
add a comment |
$begingroup$
From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw
$$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$
Then back to Cartesian coordinates,
$$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$
$endgroup$
add a comment |
$begingroup$
From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw
$$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$
Then back to Cartesian coordinates,
$$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$
$endgroup$
From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw
$$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$
Then back to Cartesian coordinates,
$$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$
answered Dec 2 '18 at 16:55
Yves DaoustYves Daoust
128k675227
128k675227
add a comment |
add a comment |
$begingroup$
$$begin{align}
z&=1+ni,~r=sqrt{n^2+1}\
1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
&= sqrt{n^2+1}e^{itan^{-1}(n)}\
sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
z&=1+ni,~r=sqrt{n^2+1}\
1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
&= sqrt{n^2+1}e^{itan^{-1}(n)}\
sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
z&=1+ni,~r=sqrt{n^2+1}\
1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
&= sqrt{n^2+1}e^{itan^{-1}(n)}\
sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
end{align}$$
$endgroup$
$$begin{align}
z&=1+ni,~r=sqrt{n^2+1}\
1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
&= sqrt{n^2+1}e^{itan^{-1}(n)}\
sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
end{align}$$
answered Dec 2 '18 at 16:48
LarryLarry
2,40131129
2,40131129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022841%2fhow-to-show-that-sqrt1ni-sqrt4n21-cos-left-frac12-tan-1n-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31
$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37