How do I find out that the following two matrices are similar?
$begingroup$
How do I find out that the following two matrices are similar?
$N =
begin{pmatrix}
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$
and $M=
begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 \
0 & 0 & 0 & 0
end{pmatrix}$
I initially tried to think of the left multiplication of a matrix $P$ as a row operation and tried
$P=
begin{pmatrix}
0 & 0 & 1 & 0 \
0 & 1 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 0 & 0 & 1
end{pmatrix}$
such that $PN = begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$ but then $PNP^{-1} neq M$.
My linear algebra is a bit rusty. Is there a more elaborate way to do this?
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
How do I find out that the following two matrices are similar?
$N =
begin{pmatrix}
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$
and $M=
begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 \
0 & 0 & 0 & 0
end{pmatrix}$
I initially tried to think of the left multiplication of a matrix $P$ as a row operation and tried
$P=
begin{pmatrix}
0 & 0 & 1 & 0 \
0 & 1 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 0 & 0 & 1
end{pmatrix}$
such that $PN = begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$ but then $PNP^{-1} neq M$.
My linear algebra is a bit rusty. Is there a more elaborate way to do this?
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
How do I find out that the following two matrices are similar?
$N =
begin{pmatrix}
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$
and $M=
begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 \
0 & 0 & 0 & 0
end{pmatrix}$
I initially tried to think of the left multiplication of a matrix $P$ as a row operation and tried
$P=
begin{pmatrix}
0 & 0 & 1 & 0 \
0 & 1 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 0 & 0 & 1
end{pmatrix}$
such that $PN = begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$ but then $PNP^{-1} neq M$.
My linear algebra is a bit rusty. Is there a more elaborate way to do this?
linear-algebra matrices
$endgroup$
How do I find out that the following two matrices are similar?
$N =
begin{pmatrix}
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$
and $M=
begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 \
0 & 0 & 0 & 0
end{pmatrix}$
I initially tried to think of the left multiplication of a matrix $P$ as a row operation and tried
$P=
begin{pmatrix}
0 & 0 & 1 & 0 \
0 & 1 & 0 & 0 \
1 & 0 & 0 & 0 \
0 & 0 & 0 & 1
end{pmatrix}$
such that $PN = begin{pmatrix}
0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 0 & 0
end{pmatrix}$ but then $PNP^{-1} neq M$.
My linear algebra is a bit rusty. Is there a more elaborate way to do this?
linear-algebra matrices
linear-algebra matrices
edited Jan 3 at 10:41
José Carlos Santos
159k22126229
159k22126229
asked Jan 3 at 10:22
MPB94MPB94
27017
27017
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $(e_1,e_2,e_3,e_3)$ be the standard basis of $mathbb{R}^4$. You have:
$N.e_1=0$;
$N.e_2=e_1$;
$N.e_3=0$;
$N.e_4=0$.
You also have:
$M.e_3=0$;
$M.e_4=e_3$;
$M.e_1=0$;
$M.e_2=0$.
So, if you see $M$ as a linear map from $mathbb{R}^4$ into itself, the matrix of $M$ with respect to the basis $(e_3,e_4,e_1,e_2)$ is the matrix $N$. Therefore, $N$ and $M$ are similar.
Or you can take$$P=begin{bmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{bmatrix},$$which is basically the same thing.
$endgroup$
add a comment |
$begingroup$
The two matrices are made of Jordan blocks; in $2times2$ block format, they are
$$
N=begin{bmatrix} J & 0 \ 0 & 0 end{bmatrix}
qquad
M=begin{bmatrix} 0 & 0 \ 0 & J end{bmatrix}
$$
You get similar matrices if you perform a row switch together with the corresponding column switch; in this case there is only one possible switch:
$$
M=begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix} N
begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix}
$$
$endgroup$
add a comment |
$begingroup$
Let $P_{ij}$ be a matrix that switches the $i$th and $j$th rows. Then $P^T_{ij}$ switches the $i$th and $j$th columns. Thus, $M=P^T_{24}P_{13}N$. If you take $P=P^T_{24}P_{13}$, then $PNP^{-1}$= $P^T_{24}P_{13}N (P^T_{24}P_{13})^{-1}$=$M(P^T_{24}P_{13})^{-1}$ = $MP_{13}^{-1}(P^T_{24})^{-1}$. Switching rows and columns is its own inverse, so this is $MP_{13}P^T_{24}$. If the left-action of a matrix is to switch rows, then the right-action of that matrix is to switch columns. So $MP_{13}P^T_{24}$ means switch the 1st and 3rd columns of $M$, then switch the 2nd and 4th rows. But that doesn't affect $M$. So $PNP^{-1}$=$M$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060424%2fhow-do-i-find-out-that-the-following-two-matrices-are-similar%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $(e_1,e_2,e_3,e_3)$ be the standard basis of $mathbb{R}^4$. You have:
$N.e_1=0$;
$N.e_2=e_1$;
$N.e_3=0$;
$N.e_4=0$.
You also have:
$M.e_3=0$;
$M.e_4=e_3$;
$M.e_1=0$;
$M.e_2=0$.
So, if you see $M$ as a linear map from $mathbb{R}^4$ into itself, the matrix of $M$ with respect to the basis $(e_3,e_4,e_1,e_2)$ is the matrix $N$. Therefore, $N$ and $M$ are similar.
Or you can take$$P=begin{bmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{bmatrix},$$which is basically the same thing.
$endgroup$
add a comment |
$begingroup$
Let $(e_1,e_2,e_3,e_3)$ be the standard basis of $mathbb{R}^4$. You have:
$N.e_1=0$;
$N.e_2=e_1$;
$N.e_3=0$;
$N.e_4=0$.
You also have:
$M.e_3=0$;
$M.e_4=e_3$;
$M.e_1=0$;
$M.e_2=0$.
So, if you see $M$ as a linear map from $mathbb{R}^4$ into itself, the matrix of $M$ with respect to the basis $(e_3,e_4,e_1,e_2)$ is the matrix $N$. Therefore, $N$ and $M$ are similar.
Or you can take$$P=begin{bmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{bmatrix},$$which is basically the same thing.
$endgroup$
add a comment |
$begingroup$
Let $(e_1,e_2,e_3,e_3)$ be the standard basis of $mathbb{R}^4$. You have:
$N.e_1=0$;
$N.e_2=e_1$;
$N.e_3=0$;
$N.e_4=0$.
You also have:
$M.e_3=0$;
$M.e_4=e_3$;
$M.e_1=0$;
$M.e_2=0$.
So, if you see $M$ as a linear map from $mathbb{R}^4$ into itself, the matrix of $M$ with respect to the basis $(e_3,e_4,e_1,e_2)$ is the matrix $N$. Therefore, $N$ and $M$ are similar.
Or you can take$$P=begin{bmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{bmatrix},$$which is basically the same thing.
$endgroup$
Let $(e_1,e_2,e_3,e_3)$ be the standard basis of $mathbb{R}^4$. You have:
$N.e_1=0$;
$N.e_2=e_1$;
$N.e_3=0$;
$N.e_4=0$.
You also have:
$M.e_3=0$;
$M.e_4=e_3$;
$M.e_1=0$;
$M.e_2=0$.
So, if you see $M$ as a linear map from $mathbb{R}^4$ into itself, the matrix of $M$ with respect to the basis $(e_3,e_4,e_1,e_2)$ is the matrix $N$. Therefore, $N$ and $M$ are similar.
Or you can take$$P=begin{bmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{bmatrix},$$which is basically the same thing.
edited Jan 3 at 23:20
answered Jan 3 at 10:30
José Carlos SantosJosé Carlos Santos
159k22126229
159k22126229
add a comment |
add a comment |
$begingroup$
The two matrices are made of Jordan blocks; in $2times2$ block format, they are
$$
N=begin{bmatrix} J & 0 \ 0 & 0 end{bmatrix}
qquad
M=begin{bmatrix} 0 & 0 \ 0 & J end{bmatrix}
$$
You get similar matrices if you perform a row switch together with the corresponding column switch; in this case there is only one possible switch:
$$
M=begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix} N
begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix}
$$
$endgroup$
add a comment |
$begingroup$
The two matrices are made of Jordan blocks; in $2times2$ block format, they are
$$
N=begin{bmatrix} J & 0 \ 0 & 0 end{bmatrix}
qquad
M=begin{bmatrix} 0 & 0 \ 0 & J end{bmatrix}
$$
You get similar matrices if you perform a row switch together with the corresponding column switch; in this case there is only one possible switch:
$$
M=begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix} N
begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix}
$$
$endgroup$
add a comment |
$begingroup$
The two matrices are made of Jordan blocks; in $2times2$ block format, they are
$$
N=begin{bmatrix} J & 0 \ 0 & 0 end{bmatrix}
qquad
M=begin{bmatrix} 0 & 0 \ 0 & J end{bmatrix}
$$
You get similar matrices if you perform a row switch together with the corresponding column switch; in this case there is only one possible switch:
$$
M=begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix} N
begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix}
$$
$endgroup$
The two matrices are made of Jordan blocks; in $2times2$ block format, they are
$$
N=begin{bmatrix} J & 0 \ 0 & 0 end{bmatrix}
qquad
M=begin{bmatrix} 0 & 0 \ 0 & J end{bmatrix}
$$
You get similar matrices if you perform a row switch together with the corresponding column switch; in this case there is only one possible switch:
$$
M=begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix} N
begin{bmatrix} 0 & I_2 \ I_2 & 0 end{bmatrix}
$$
answered Jan 3 at 10:40
egregegreg
181k1485203
181k1485203
add a comment |
add a comment |
$begingroup$
Let $P_{ij}$ be a matrix that switches the $i$th and $j$th rows. Then $P^T_{ij}$ switches the $i$th and $j$th columns. Thus, $M=P^T_{24}P_{13}N$. If you take $P=P^T_{24}P_{13}$, then $PNP^{-1}$= $P^T_{24}P_{13}N (P^T_{24}P_{13})^{-1}$=$M(P^T_{24}P_{13})^{-1}$ = $MP_{13}^{-1}(P^T_{24})^{-1}$. Switching rows and columns is its own inverse, so this is $MP_{13}P^T_{24}$. If the left-action of a matrix is to switch rows, then the right-action of that matrix is to switch columns. So $MP_{13}P^T_{24}$ means switch the 1st and 3rd columns of $M$, then switch the 2nd and 4th rows. But that doesn't affect $M$. So $PNP^{-1}$=$M$.
$endgroup$
add a comment |
$begingroup$
Let $P_{ij}$ be a matrix that switches the $i$th and $j$th rows. Then $P^T_{ij}$ switches the $i$th and $j$th columns. Thus, $M=P^T_{24}P_{13}N$. If you take $P=P^T_{24}P_{13}$, then $PNP^{-1}$= $P^T_{24}P_{13}N (P^T_{24}P_{13})^{-1}$=$M(P^T_{24}P_{13})^{-1}$ = $MP_{13}^{-1}(P^T_{24})^{-1}$. Switching rows and columns is its own inverse, so this is $MP_{13}P^T_{24}$. If the left-action of a matrix is to switch rows, then the right-action of that matrix is to switch columns. So $MP_{13}P^T_{24}$ means switch the 1st and 3rd columns of $M$, then switch the 2nd and 4th rows. But that doesn't affect $M$. So $PNP^{-1}$=$M$.
$endgroup$
add a comment |
$begingroup$
Let $P_{ij}$ be a matrix that switches the $i$th and $j$th rows. Then $P^T_{ij}$ switches the $i$th and $j$th columns. Thus, $M=P^T_{24}P_{13}N$. If you take $P=P^T_{24}P_{13}$, then $PNP^{-1}$= $P^T_{24}P_{13}N (P^T_{24}P_{13})^{-1}$=$M(P^T_{24}P_{13})^{-1}$ = $MP_{13}^{-1}(P^T_{24})^{-1}$. Switching rows and columns is its own inverse, so this is $MP_{13}P^T_{24}$. If the left-action of a matrix is to switch rows, then the right-action of that matrix is to switch columns. So $MP_{13}P^T_{24}$ means switch the 1st and 3rd columns of $M$, then switch the 2nd and 4th rows. But that doesn't affect $M$. So $PNP^{-1}$=$M$.
$endgroup$
Let $P_{ij}$ be a matrix that switches the $i$th and $j$th rows. Then $P^T_{ij}$ switches the $i$th and $j$th columns. Thus, $M=P^T_{24}P_{13}N$. If you take $P=P^T_{24}P_{13}$, then $PNP^{-1}$= $P^T_{24}P_{13}N (P^T_{24}P_{13})^{-1}$=$M(P^T_{24}P_{13})^{-1}$ = $MP_{13}^{-1}(P^T_{24})^{-1}$. Switching rows and columns is its own inverse, so this is $MP_{13}P^T_{24}$. If the left-action of a matrix is to switch rows, then the right-action of that matrix is to switch columns. So $MP_{13}P^T_{24}$ means switch the 1st and 3rd columns of $M$, then switch the 2nd and 4th rows. But that doesn't affect $M$. So $PNP^{-1}$=$M$.
answered Jan 3 at 16:16
AcccumulationAcccumulation
6,8942618
6,8942618
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060424%2fhow-do-i-find-out-that-the-following-two-matrices-are-similar%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown