Simplifying radicals without using prime factorization












2












$begingroup$


Is there an easy way to simplify radicals?



For example, take the case of $sqrt{252}$. We can the find prime factorization of $252$ as $252=2times 2times 3 times 3times 7$ and thus we get $sqrt{252}=sqrt{2times 2times 3 times 3times 7}=6sqrt{7}.$



This method takes more time for large numbers. Without doing these calculations, i.e., without finding out prime factorization, is there any approach available to simplify radicals?



Please help. thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    For this kind of simplification, not really, I think. If all you're after is $15.87$, then there are numerous methods (not that I personally know very many, but I know they are there).
    $endgroup$
    – Arthur
    Nov 26 '18 at 17:28












  • $begingroup$
    thanks for the info
    $endgroup$
    – Kiran
    Nov 26 '18 at 17:34






  • 1




    $begingroup$
    If the number if definable as a multiple of some perfect square factors, that would mean the radical is reducible.For example:$252=16^2-2^2=(16-2)(16+2)=2^2.3^2.7$. I think this takes shorter time than factorizing.
    $endgroup$
    – sirous
    Nov 27 '18 at 3:21










  • $begingroup$
    If the number is too large to complete the factorization, you cannot do any better than factor the number as far as possible. If you continue upto, lets say, $10^6$, chances that the cofactor is squarefree, are very good. In most cases, you will not miss a better solution, but only the factorization makes all doubts vanish.
    $endgroup$
    – Peter
    Jan 19 at 15:39










  • $begingroup$
    @sirous But in general, deciding whether a number is squarefree is not significantly easier than factoring.
    $endgroup$
    – Peter
    Jan 20 at 12:50
















2












$begingroup$


Is there an easy way to simplify radicals?



For example, take the case of $sqrt{252}$. We can the find prime factorization of $252$ as $252=2times 2times 3 times 3times 7$ and thus we get $sqrt{252}=sqrt{2times 2times 3 times 3times 7}=6sqrt{7}.$



This method takes more time for large numbers. Without doing these calculations, i.e., without finding out prime factorization, is there any approach available to simplify radicals?



Please help. thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    For this kind of simplification, not really, I think. If all you're after is $15.87$, then there are numerous methods (not that I personally know very many, but I know they are there).
    $endgroup$
    – Arthur
    Nov 26 '18 at 17:28












  • $begingroup$
    thanks for the info
    $endgroup$
    – Kiran
    Nov 26 '18 at 17:34






  • 1




    $begingroup$
    If the number if definable as a multiple of some perfect square factors, that would mean the radical is reducible.For example:$252=16^2-2^2=(16-2)(16+2)=2^2.3^2.7$. I think this takes shorter time than factorizing.
    $endgroup$
    – sirous
    Nov 27 '18 at 3:21










  • $begingroup$
    If the number is too large to complete the factorization, you cannot do any better than factor the number as far as possible. If you continue upto, lets say, $10^6$, chances that the cofactor is squarefree, are very good. In most cases, you will not miss a better solution, but only the factorization makes all doubts vanish.
    $endgroup$
    – Peter
    Jan 19 at 15:39










  • $begingroup$
    @sirous But in general, deciding whether a number is squarefree is not significantly easier than factoring.
    $endgroup$
    – Peter
    Jan 20 at 12:50














2












2








2





$begingroup$


Is there an easy way to simplify radicals?



For example, take the case of $sqrt{252}$. We can the find prime factorization of $252$ as $252=2times 2times 3 times 3times 7$ and thus we get $sqrt{252}=sqrt{2times 2times 3 times 3times 7}=6sqrt{7}.$



This method takes more time for large numbers. Without doing these calculations, i.e., without finding out prime factorization, is there any approach available to simplify radicals?



Please help. thanks.










share|cite|improve this question











$endgroup$




Is there an easy way to simplify radicals?



For example, take the case of $sqrt{252}$. We can the find prime factorization of $252$ as $252=2times 2times 3 times 3times 7$ and thus we get $sqrt{252}=sqrt{2times 2times 3 times 3times 7}=6sqrt{7}.$



This method takes more time for large numbers. Without doing these calculations, i.e., without finding out prime factorization, is there any approach available to simplify radicals?



Please help. thanks.







elementary-number-theory prime-numbers prime-factorization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 '18 at 10:01









daniel

6,22022157




6,22022157










asked Nov 26 '18 at 17:19









KiranKiran

3,21411634




3,21411634












  • $begingroup$
    For this kind of simplification, not really, I think. If all you're after is $15.87$, then there are numerous methods (not that I personally know very many, but I know they are there).
    $endgroup$
    – Arthur
    Nov 26 '18 at 17:28












  • $begingroup$
    thanks for the info
    $endgroup$
    – Kiran
    Nov 26 '18 at 17:34






  • 1




    $begingroup$
    If the number if definable as a multiple of some perfect square factors, that would mean the radical is reducible.For example:$252=16^2-2^2=(16-2)(16+2)=2^2.3^2.7$. I think this takes shorter time than factorizing.
    $endgroup$
    – sirous
    Nov 27 '18 at 3:21










  • $begingroup$
    If the number is too large to complete the factorization, you cannot do any better than factor the number as far as possible. If you continue upto, lets say, $10^6$, chances that the cofactor is squarefree, are very good. In most cases, you will not miss a better solution, but only the factorization makes all doubts vanish.
    $endgroup$
    – Peter
    Jan 19 at 15:39










  • $begingroup$
    @sirous But in general, deciding whether a number is squarefree is not significantly easier than factoring.
    $endgroup$
    – Peter
    Jan 20 at 12:50


















  • $begingroup$
    For this kind of simplification, not really, I think. If all you're after is $15.87$, then there are numerous methods (not that I personally know very many, but I know they are there).
    $endgroup$
    – Arthur
    Nov 26 '18 at 17:28












  • $begingroup$
    thanks for the info
    $endgroup$
    – Kiran
    Nov 26 '18 at 17:34






  • 1




    $begingroup$
    If the number if definable as a multiple of some perfect square factors, that would mean the radical is reducible.For example:$252=16^2-2^2=(16-2)(16+2)=2^2.3^2.7$. I think this takes shorter time than factorizing.
    $endgroup$
    – sirous
    Nov 27 '18 at 3:21










  • $begingroup$
    If the number is too large to complete the factorization, you cannot do any better than factor the number as far as possible. If you continue upto, lets say, $10^6$, chances that the cofactor is squarefree, are very good. In most cases, you will not miss a better solution, but only the factorization makes all doubts vanish.
    $endgroup$
    – Peter
    Jan 19 at 15:39










  • $begingroup$
    @sirous But in general, deciding whether a number is squarefree is not significantly easier than factoring.
    $endgroup$
    – Peter
    Jan 20 at 12:50
















$begingroup$
For this kind of simplification, not really, I think. If all you're after is $15.87$, then there are numerous methods (not that I personally know very many, but I know they are there).
$endgroup$
– Arthur
Nov 26 '18 at 17:28






$begingroup$
For this kind of simplification, not really, I think. If all you're after is $15.87$, then there are numerous methods (not that I personally know very many, but I know they are there).
$endgroup$
– Arthur
Nov 26 '18 at 17:28














$begingroup$
thanks for the info
$endgroup$
– Kiran
Nov 26 '18 at 17:34




$begingroup$
thanks for the info
$endgroup$
– Kiran
Nov 26 '18 at 17:34




1




1




$begingroup$
If the number if definable as a multiple of some perfect square factors, that would mean the radical is reducible.For example:$252=16^2-2^2=(16-2)(16+2)=2^2.3^2.7$. I think this takes shorter time than factorizing.
$endgroup$
– sirous
Nov 27 '18 at 3:21




$begingroup$
If the number if definable as a multiple of some perfect square factors, that would mean the radical is reducible.For example:$252=16^2-2^2=(16-2)(16+2)=2^2.3^2.7$. I think this takes shorter time than factorizing.
$endgroup$
– sirous
Nov 27 '18 at 3:21












$begingroup$
If the number is too large to complete the factorization, you cannot do any better than factor the number as far as possible. If you continue upto, lets say, $10^6$, chances that the cofactor is squarefree, are very good. In most cases, you will not miss a better solution, but only the factorization makes all doubts vanish.
$endgroup$
– Peter
Jan 19 at 15:39




$begingroup$
If the number is too large to complete the factorization, you cannot do any better than factor the number as far as possible. If you continue upto, lets say, $10^6$, chances that the cofactor is squarefree, are very good. In most cases, you will not miss a better solution, but only the factorization makes all doubts vanish.
$endgroup$
– Peter
Jan 19 at 15:39












$begingroup$
@sirous But in general, deciding whether a number is squarefree is not significantly easier than factoring.
$endgroup$
– Peter
Jan 20 at 12:50




$begingroup$
@sirous But in general, deciding whether a number is squarefree is not significantly easier than factoring.
$endgroup$
– Peter
Jan 20 at 12:50










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014616%2fsimplifying-radicals-without-using-prime-factorization%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014616%2fsimplifying-radicals-without-using-prime-factorization%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents