Finding matrix given eigenvalues and eigenvectors.
$begingroup$
a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$
and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$
with $w$= 1 and $l$=3 respectively, find matrix $B$.
b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.
What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$ and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$ and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$.
However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?
linear-algebra matrices eigenvalues-eigenvectors linear-transformations
$endgroup$
add a comment |
$begingroup$
a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$
and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$
with $w$= 1 and $l$=3 respectively, find matrix $B$.
b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.
What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$ and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$ and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$.
However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?
linear-algebra matrices eigenvalues-eigenvectors linear-transformations
$endgroup$
$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13
add a comment |
$begingroup$
a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$
and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$
with $w$= 1 and $l$=3 respectively, find matrix $B$.
b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.
What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$ and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$ and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$.
However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?
linear-algebra matrices eigenvalues-eigenvectors linear-transformations
$endgroup$
a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$
and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$
with $w$= 1 and $l$=3 respectively, find matrix $B$.
b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.
What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$ and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$ and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$.
However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?
linear-algebra matrices eigenvalues-eigenvectors linear-transformations
linear-algebra matrices eigenvalues-eigenvectors linear-transformations
asked Nov 26 '18 at 17:06
Cheryl Cheryl
755
755
$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13
add a comment |
$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13
$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13
$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.
If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.
$endgroup$
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014601%2ffinding-matrix-given-eigenvalues-and-eigenvectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.
If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.
$endgroup$
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
add a comment |
$begingroup$
Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.
If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.
$endgroup$
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
add a comment |
$begingroup$
Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.
If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.
$endgroup$
Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.
If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.
answered Nov 26 '18 at 17:20
José Carlos SantosJosé Carlos Santos
156k22125227
156k22125227
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
add a comment |
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014601%2ffinding-matrix-given-eigenvalues-and-eigenvectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13