Problem with theorems numeration












0















Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}


newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}


begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\



section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie

end{prop}
end{document}









share|improve this question

























  • Incidentally, if you define your theorem environments as newtheorem{Def}{Definición}[section] and then newtheorem{cor}[Def]{Corolario}, newtheorem{lem}[Def]{Lema} etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.

    – Circumscribe
    Jan 15 at 23:32
















0















Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}


newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}


begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\



section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie

end{prop}
end{document}









share|improve this question

























  • Incidentally, if you define your theorem environments as newtheorem{Def}{Definición}[section] and then newtheorem{cor}[Def]{Corolario}, newtheorem{lem}[Def]{Lema} etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.

    – Circumscribe
    Jan 15 at 23:32














0












0








0








Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}


newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}


begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\



section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie

end{prop}
end{document}









share|improve this question
















Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}


newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}


begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\



section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie

end{prop}
end{document}






numbering theorems






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 15 at 23:26









Circumscribe

5,8361836




5,8361836










asked Jan 15 at 20:01









Diego PatiñoDiego Patiño

345




345













  • Incidentally, if you define your theorem environments as newtheorem{Def}{Definición}[section] and then newtheorem{cor}[Def]{Corolario}, newtheorem{lem}[Def]{Lema} etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.

    – Circumscribe
    Jan 15 at 23:32



















  • Incidentally, if you define your theorem environments as newtheorem{Def}{Definición}[section] and then newtheorem{cor}[Def]{Corolario}, newtheorem{lem}[Def]{Lema} etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.

    – Circumscribe
    Jan 15 at 23:32

















Incidentally, if you define your theorem environments as newtheorem{Def}{Definición}[section] and then newtheorem{cor}[Def]{Corolario}, newtheorem{lem}[Def]{Lema} etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.

– Circumscribe
Jan 15 at 23:32





Incidentally, if you define your theorem environments as newtheorem{Def}{Definición}[section] and then newtheorem{cor}[Def]{Corolario}, newtheorem{lem}[Def]{Lema} etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.

– Circumscribe
Jan 15 at 23:32










2 Answers
2






active

oldest

votes


















2














Make all newtheorem definition as, for example, newtheorem{prop}{Proposicion}[section].



newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]


enter image description here






share|improve this answer
























  • Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

    – Diego Patiño
    Jan 15 at 21:11



















3














The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.



Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}

newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom

begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\

section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie
end{prop}

end{document}


enter image description here






share|improve this answer


























  • Thanks a lot @Bernard. I see there are other ways to list the theorems.

    – Diego Patiño
    Jan 15 at 21:13











Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f470293%2fproblem-with-theorems-numeration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














Make all newtheorem definition as, for example, newtheorem{prop}{Proposicion}[section].



newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]


enter image description here






share|improve this answer
























  • Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

    – Diego Patiño
    Jan 15 at 21:11
















2














Make all newtheorem definition as, for example, newtheorem{prop}{Proposicion}[section].



newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]


enter image description here






share|improve this answer
























  • Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

    – Diego Patiño
    Jan 15 at 21:11














2












2








2







Make all newtheorem definition as, for example, newtheorem{prop}{Proposicion}[section].



newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]


enter image description here






share|improve this answer













Make all newtheorem definition as, for example, newtheorem{prop}{Proposicion}[section].



newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]


enter image description here







share|improve this answer












share|improve this answer



share|improve this answer










answered Jan 15 at 20:39









ferahfezaferahfeza

5,45911830




5,45911830













  • Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

    – Diego Patiño
    Jan 15 at 21:11



















  • Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

    – Diego Patiño
    Jan 15 at 21:11

















Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

– Diego Patiño
Jan 15 at 21:11





Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.

– Diego Patiño
Jan 15 at 21:11











3














The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.



Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}

newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom

begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\

section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie
end{prop}

end{document}


enter image description here






share|improve this answer


























  • Thanks a lot @Bernard. I see there are other ways to list the theorems.

    – Diego Patiño
    Jan 15 at 21:13
















3














The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.



Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}

newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom

begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\

section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie
end{prop}

end{document}


enter image description here






share|improve this answer


























  • Thanks a lot @Bernard. I see there are other ways to list the theorems.

    – Diego Patiño
    Jan 15 at 21:13














3












3








3







The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.



Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}

newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom

begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\

section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie
end{prop}

end{document}


enter image description here






share|improve this answer















The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.



Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}

newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom

begin{document}

maketitle

section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\

section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:

begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}

begin{prop}
Las siguientes afie
end{prop}

end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 15 at 21:07

























answered Jan 15 at 20:41









BernardBernard

168k770195




168k770195













  • Thanks a lot @Bernard. I see there are other ways to list the theorems.

    – Diego Patiño
    Jan 15 at 21:13



















  • Thanks a lot @Bernard. I see there are other ways to list the theorems.

    – Diego Patiño
    Jan 15 at 21:13

















Thanks a lot @Bernard. I see there are other ways to list the theorems.

– Diego Patiño
Jan 15 at 21:13





Thanks a lot @Bernard. I see there are other ways to list the theorems.

– Diego Patiño
Jan 15 at 21:13


















draft saved

draft discarded




















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f470293%2fproblem-with-theorems-numeration%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?