Problem with theorems numeration
Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
numbering theorems
add a comment |
Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
numbering theorems
Incidentally, if you define your theorem environments asnewtheorem{Def}{Definición}[section]
and thennewtheorem{cor}[Def]{Corolario}
,newtheorem{lem}[Def]{Lema}
etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.
– Circumscribe
Jan 15 at 23:32
add a comment |
Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
numbering theorems
Good morning members of the community. I am preparing a document and the same problem of enumeration in the theorems always arises. In this case I do not know how to do so that the first proposition comes out labeled as proposition 2.1 (which would be the right thing). I'd appreciate your help. I attach the code.
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage[left=2cm,right=2.cm,top=2cm,bottom=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}[subsection]{Definición}
newtheorem{cor}[subsection] {Corolario}
newtheorem{lem}[subsection]{Lema}
newtheorem{prop}[subsection]{Proposicion}
newtheorem{teo}[subsection] {Teorema}
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
numbering theorems
numbering theorems
edited Jan 15 at 23:26
Circumscribe
5,8361836
5,8361836
asked Jan 15 at 20:01
Diego PatiñoDiego Patiño
345
345
Incidentally, if you define your theorem environments asnewtheorem{Def}{Definición}[section]
and thennewtheorem{cor}[Def]{Corolario}
,newtheorem{lem}[Def]{Lema}
etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.
– Circumscribe
Jan 15 at 23:32
add a comment |
Incidentally, if you define your theorem environments asnewtheorem{Def}{Definición}[section]
and thennewtheorem{cor}[Def]{Corolario}
,newtheorem{lem}[Def]{Lema}
etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.
– Circumscribe
Jan 15 at 23:32
Incidentally, if you define your theorem environments as
newtheorem{Def}{Definición}[section]
and then newtheorem{cor}[Def]{Corolario}
, newtheorem{lem}[Def]{Lema}
etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.– Circumscribe
Jan 15 at 23:32
Incidentally, if you define your theorem environments as
newtheorem{Def}{Definición}[section]
and then newtheorem{cor}[Def]{Corolario}
, newtheorem{lem}[Def]{Lema}
etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.– Circumscribe
Jan 15 at 23:32
add a comment |
2 Answers
2
active
oldest
votes
Make all newtheorem
definition as, for example, newtheorem{prop}{Proposicion}[section]
.
newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
add a comment |
The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.
Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f470293%2fproblem-with-theorems-numeration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Make all newtheorem
definition as, for example, newtheorem{prop}{Proposicion}[section]
.
newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
add a comment |
Make all newtheorem
definition as, for example, newtheorem{prop}{Proposicion}[section]
.
newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
add a comment |
Make all newtheorem
definition as, for example, newtheorem{prop}{Proposicion}[section]
.
newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]
Make all newtheorem
definition as, for example, newtheorem{prop}{Proposicion}[section]
.
newtheorem{Def}{Definición}[section]
newtheorem{cor} {Corolario}[section]
newtheorem{lem}{Lema}[section]
newtheorem{prop}{Proposicion}[section]
newtheorem{teo} {Teorema}[section]
answered Jan 15 at 20:39
ferahfezaferahfeza
5,45911830
5,45911830
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
add a comment |
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
Thanks a lot! @ferahfeza. It was very useful for me. I have learned something new. I see that my error was in the order of the parameters.
– Diego Patiño
Jan 15 at 21:11
add a comment |
The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.
Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
add a comment |
The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.
Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
add a comment |
The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.
Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
The optional argument used in second position is for counters of other theorem-like environments, to mean they share the same counter. Resetting to 1 the theorem-like counter at every (sub)section uses the (sub)section counter as an optional argument in third position.
Also beware that if the numbering is reset at each subsection the theorem numbers will be made up of 3 numbers (section no.subsection no.theorem no):
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[spanish]{babel}
usepackage{mathrsfs}
usepackage{amsmath}
usepackage{amssymb}
usepackage[margin=2cm]{geometry}
title{Teorema de Banach-Alaouglu-Bourbaki}
author{Diego Patiño}
markright{ {small {it Análisis funcional}}}
date{Enero 2019}
pagestyle{myheadings}
newtheorem{Def}{Definición}[subsection]
newtheorem{cor} {Corolario}[subsection]
newtheorem{lem}{Lema}[subsection]
newtheorem{prop}{Proposicion}[subsection]
newtheorem{teo} {Teorema}[subsection]
raggedbottom
begin{document}
maketitle
section{Introduction}
Se sabe que la bola unitaria cerrada de un espacio vectorial de dimensión
infinita no es compacta, de hecho, un espacio vectorial $E$ es finito
dimensional si y solamente si la bola cerrada unitaria en $E$ es compacta.
El problema radica entonces en controlar esta situación, debilitando la
topología con la cuál dotamos el espacio, lo que permite tener menos
abiertos y al mismo tiempo ganar más conjuntos compactos. El precio a pagar
por este debilitamiento es que el número de funciones continuas disminuye,
en comparación con la ganancia de compactos...\
section{Preliminares}
A continuación se darán algunas definiciones y resultados útiles de
topología general:
begin{Def}[Función contínua] Una función $f:Xto Y$ entre espacios
topológicos es textit{continua} si el conjunto
begin{equation*}
f^{-1}(A):={xin X:f(x)in A}
end{equation*}
es abierto en $X$ para todo abierto $A$ en $Y$
end{Def}
begin{prop}
Las siguientes afie
end{prop}
end{document}
edited Jan 15 at 21:07
answered Jan 15 at 20:41
BernardBernard
168k770195
168k770195
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
add a comment |
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
Thanks a lot @Bernard. I see there are other ways to list the theorems.
– Diego Patiño
Jan 15 at 21:13
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f470293%2fproblem-with-theorems-numeration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Incidentally, if you define your theorem environments as
newtheorem{Def}{Definición}[section]
and thennewtheorem{cor}[Def]{Corolario}
,newtheorem{lem}[Def]{Lema}
etc. they'll share a counter. So after "Definition 2.1" you'll get "Proposition 2.2". It's a personal preference, but I find that this makes the document easier to navigate.– Circumscribe
Jan 15 at 23:32