Draw the four conic sections












5















I want to draw the four conic sections (circumference, ellipse, parabola, and hyperbola) as shown in the picture:



The four conic sections



MWE:



documentclass{article}
usepackage{pst-plot}
usepackage{tikz}

begin{document}

begin{tikzpicture}[line cap=round,line join=round,x=1.0cm,y=1.0cm]
clip(-2.48,-2.52) rectangle (2.68,5.44);

draw [line width=1.pt] (0.,0.) ellipse (2.cm and 0.8cm);
draw [line width=1.pt] (2.,0.)-- (0.,5.);
draw [line width=1.pt] (0.,5.)-- (-2.,0.);

draw [rotate around={25.:(-0.2,2.3)}] (-0.2,2.3) ellipse (1.15cm and 0.4cm);

draw [line width=1.pt] (0.,3.4) ellipse (0.65cm and 0.2cm);

draw [line width=1.pt] (1.4,1.4) parabola (1.6,-0.5);
draw [line width=1.pt] (1.4,1.4) parabola (0.75,0.75);
end{tikzpicture}

end{document}









share|improve this question




















  • 2





    Welcome!! Please use English in this site. If you have problems to translate it, please contact me (I am Argentinian). Also, what hace you tried so far?

    – manooooh
    Oct 30 '18 at 3:51


















5















I want to draw the four conic sections (circumference, ellipse, parabola, and hyperbola) as shown in the picture:



The four conic sections



MWE:



documentclass{article}
usepackage{pst-plot}
usepackage{tikz}

begin{document}

begin{tikzpicture}[line cap=round,line join=round,x=1.0cm,y=1.0cm]
clip(-2.48,-2.52) rectangle (2.68,5.44);

draw [line width=1.pt] (0.,0.) ellipse (2.cm and 0.8cm);
draw [line width=1.pt] (2.,0.)-- (0.,5.);
draw [line width=1.pt] (0.,5.)-- (-2.,0.);

draw [rotate around={25.:(-0.2,2.3)}] (-0.2,2.3) ellipse (1.15cm and 0.4cm);

draw [line width=1.pt] (0.,3.4) ellipse (0.65cm and 0.2cm);

draw [line width=1.pt] (1.4,1.4) parabola (1.6,-0.5);
draw [line width=1.pt] (1.4,1.4) parabola (0.75,0.75);
end{tikzpicture}

end{document}









share|improve this question




















  • 2





    Welcome!! Please use English in this site. If you have problems to translate it, please contact me (I am Argentinian). Also, what hace you tried so far?

    – manooooh
    Oct 30 '18 at 3:51
















5












5








5


3






I want to draw the four conic sections (circumference, ellipse, parabola, and hyperbola) as shown in the picture:



The four conic sections



MWE:



documentclass{article}
usepackage{pst-plot}
usepackage{tikz}

begin{document}

begin{tikzpicture}[line cap=round,line join=round,x=1.0cm,y=1.0cm]
clip(-2.48,-2.52) rectangle (2.68,5.44);

draw [line width=1.pt] (0.,0.) ellipse (2.cm and 0.8cm);
draw [line width=1.pt] (2.,0.)-- (0.,5.);
draw [line width=1.pt] (0.,5.)-- (-2.,0.);

draw [rotate around={25.:(-0.2,2.3)}] (-0.2,2.3) ellipse (1.15cm and 0.4cm);

draw [line width=1.pt] (0.,3.4) ellipse (0.65cm and 0.2cm);

draw [line width=1.pt] (1.4,1.4) parabola (1.6,-0.5);
draw [line width=1.pt] (1.4,1.4) parabola (0.75,0.75);
end{tikzpicture}

end{document}









share|improve this question
















I want to draw the four conic sections (circumference, ellipse, parabola, and hyperbola) as shown in the picture:



The four conic sections



MWE:



documentclass{article}
usepackage{pst-plot}
usepackage{tikz}

begin{document}

begin{tikzpicture}[line cap=round,line join=round,x=1.0cm,y=1.0cm]
clip(-2.48,-2.52) rectangle (2.68,5.44);

draw [line width=1.pt] (0.,0.) ellipse (2.cm and 0.8cm);
draw [line width=1.pt] (2.,0.)-- (0.,5.);
draw [line width=1.pt] (0.,5.)-- (-2.,0.);

draw [rotate around={25.:(-0.2,2.3)}] (-0.2,2.3) ellipse (1.15cm and 0.4cm);

draw [line width=1.pt] (0.,3.4) ellipse (0.65cm and 0.2cm);

draw [line width=1.pt] (1.4,1.4) parabola (1.6,-0.5);
draw [line width=1.pt] (1.4,1.4) parabola (0.75,0.75);
end{tikzpicture}

end{document}






tikz-pgf tikz-3dplot draw tikz-3d






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 15 at 19:21









Stefan Pinnow

19.7k83275




19.7k83275










asked Oct 30 '18 at 3:50









Samuel DiazSamuel Diaz

30628




30628








  • 2





    Welcome!! Please use English in this site. If you have problems to translate it, please contact me (I am Argentinian). Also, what hace you tried so far?

    – manooooh
    Oct 30 '18 at 3:51
















  • 2





    Welcome!! Please use English in this site. If you have problems to translate it, please contact me (I am Argentinian). Also, what hace you tried so far?

    – manooooh
    Oct 30 '18 at 3:51










2




2





Welcome!! Please use English in this site. If you have problems to translate it, please contact me (I am Argentinian). Also, what hace you tried so far?

– manooooh
Oct 30 '18 at 3:51







Welcome!! Please use English in this site. If you have problems to translate it, please contact me (I am Argentinian). Also, what hace you tried so far?

– manooooh
Oct 30 '18 at 3:51












1 Answer
1






active

oldest

votes


















5














Here is a proposal. The function radius is taken from here, which might also be the source of your picture. However, the upper bounds of the last two plots, i.e. values like 69.6, are found by trial and error.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,backgrounds,intersections}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{70}{0}
begin{tikzpicture}[declare function={radius(x,y,z)=z/(1+y*cos(x));
h(x)=2.5*(2-x);},scale=2,set scale/.code={xdefmsc{#1}}]
begin{scope}[tdplot_main_coords]
begin{scope}[canvas is xy plane at z=0]
path[fill=orange!30] (0,0) circle (2);
coordinate (l) at (10:2);
coordinate (r) at (170:2);
draw[dashed,name path=back] (l) arc(10:170:2);
draw[thick,name path=front] (r) arc(170:370:2);
end{scope}
begin{scope}[on background layer]
draw[fill=orange!10] (l) -- (0,0,5) -- (r);
end{scope}
path[name path global=coat] (l) -- (0,0,5) -- (r);
pgfmathsetmacro{meps}{0}
%pgfmathsetmacro{msc}{0.75}
path[fill=blue] plot[variable=x,domain=-180:180,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
%pgfmathsetmacro{msc}{0.76}
fill[blue!60] plot[variable=x,domain=170:370,samples=72,set scale=0.76]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
--
plot[variable=x,domain=370:170,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle ;
pgfmathsetmacro{meps}{0.15}
path[fill=green!30!black] plot[variable=x,domain=-180:180,samples=72,set
scale=1.25]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
fill[green!70!black] plot[variable=x,domain=170:370,samples=72,set
scale=1.265] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=370:170,samples=72,set
scale=1.25] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
pgfmathsetmacro{meps}{1.5}
path[fill=red!80!black] plot[variable=x,domain=-70.6:70.6,samples=72,set
scale=3]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=red!80] plot[variable=x,domain=-70.6:10,samples=72,set
scale=3] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-69.6,samples=72,set
scale=3.05] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle;
pgfmathsetmacro{meps}{4}
path[fill=orange!80!black] plot[variable=x,domain=-51.4:51.4,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=orange!60] plot[variable=x,domain=-51.4:10,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-50,samples=72,set
scale=7.15]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))}) -- cycle;
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    For the record: Jake's patch is now incorporated in v3.1 of TikZ.

    – Stefan Pinnow
    Jan 15 at 19:21











Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f457452%2fdraw-the-four-conic-sections%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5














Here is a proposal. The function radius is taken from here, which might also be the source of your picture. However, the upper bounds of the last two plots, i.e. values like 69.6, are found by trial and error.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,backgrounds,intersections}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{70}{0}
begin{tikzpicture}[declare function={radius(x,y,z)=z/(1+y*cos(x));
h(x)=2.5*(2-x);},scale=2,set scale/.code={xdefmsc{#1}}]
begin{scope}[tdplot_main_coords]
begin{scope}[canvas is xy plane at z=0]
path[fill=orange!30] (0,0) circle (2);
coordinate (l) at (10:2);
coordinate (r) at (170:2);
draw[dashed,name path=back] (l) arc(10:170:2);
draw[thick,name path=front] (r) arc(170:370:2);
end{scope}
begin{scope}[on background layer]
draw[fill=orange!10] (l) -- (0,0,5) -- (r);
end{scope}
path[name path global=coat] (l) -- (0,0,5) -- (r);
pgfmathsetmacro{meps}{0}
%pgfmathsetmacro{msc}{0.75}
path[fill=blue] plot[variable=x,domain=-180:180,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
%pgfmathsetmacro{msc}{0.76}
fill[blue!60] plot[variable=x,domain=170:370,samples=72,set scale=0.76]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
--
plot[variable=x,domain=370:170,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle ;
pgfmathsetmacro{meps}{0.15}
path[fill=green!30!black] plot[variable=x,domain=-180:180,samples=72,set
scale=1.25]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
fill[green!70!black] plot[variable=x,domain=170:370,samples=72,set
scale=1.265] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=370:170,samples=72,set
scale=1.25] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
pgfmathsetmacro{meps}{1.5}
path[fill=red!80!black] plot[variable=x,domain=-70.6:70.6,samples=72,set
scale=3]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=red!80] plot[variable=x,domain=-70.6:10,samples=72,set
scale=3] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-69.6,samples=72,set
scale=3.05] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle;
pgfmathsetmacro{meps}{4}
path[fill=orange!80!black] plot[variable=x,domain=-51.4:51.4,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=orange!60] plot[variable=x,domain=-51.4:10,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-50,samples=72,set
scale=7.15]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))}) -- cycle;
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    For the record: Jake's patch is now incorporated in v3.1 of TikZ.

    – Stefan Pinnow
    Jan 15 at 19:21
















5














Here is a proposal. The function radius is taken from here, which might also be the source of your picture. However, the upper bounds of the last two plots, i.e. values like 69.6, are found by trial and error.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,backgrounds,intersections}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{70}{0}
begin{tikzpicture}[declare function={radius(x,y,z)=z/(1+y*cos(x));
h(x)=2.5*(2-x);},scale=2,set scale/.code={xdefmsc{#1}}]
begin{scope}[tdplot_main_coords]
begin{scope}[canvas is xy plane at z=0]
path[fill=orange!30] (0,0) circle (2);
coordinate (l) at (10:2);
coordinate (r) at (170:2);
draw[dashed,name path=back] (l) arc(10:170:2);
draw[thick,name path=front] (r) arc(170:370:2);
end{scope}
begin{scope}[on background layer]
draw[fill=orange!10] (l) -- (0,0,5) -- (r);
end{scope}
path[name path global=coat] (l) -- (0,0,5) -- (r);
pgfmathsetmacro{meps}{0}
%pgfmathsetmacro{msc}{0.75}
path[fill=blue] plot[variable=x,domain=-180:180,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
%pgfmathsetmacro{msc}{0.76}
fill[blue!60] plot[variable=x,domain=170:370,samples=72,set scale=0.76]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
--
plot[variable=x,domain=370:170,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle ;
pgfmathsetmacro{meps}{0.15}
path[fill=green!30!black] plot[variable=x,domain=-180:180,samples=72,set
scale=1.25]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
fill[green!70!black] plot[variable=x,domain=170:370,samples=72,set
scale=1.265] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=370:170,samples=72,set
scale=1.25] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
pgfmathsetmacro{meps}{1.5}
path[fill=red!80!black] plot[variable=x,domain=-70.6:70.6,samples=72,set
scale=3]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=red!80] plot[variable=x,domain=-70.6:10,samples=72,set
scale=3] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-69.6,samples=72,set
scale=3.05] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle;
pgfmathsetmacro{meps}{4}
path[fill=orange!80!black] plot[variable=x,domain=-51.4:51.4,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=orange!60] plot[variable=x,domain=-51.4:10,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-50,samples=72,set
scale=7.15]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))}) -- cycle;
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 1





    For the record: Jake's patch is now incorporated in v3.1 of TikZ.

    – Stefan Pinnow
    Jan 15 at 19:21














5












5








5







Here is a proposal. The function radius is taken from here, which might also be the source of your picture. However, the upper bounds of the last two plots, i.e. values like 69.6, are found by trial and error.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,backgrounds,intersections}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{70}{0}
begin{tikzpicture}[declare function={radius(x,y,z)=z/(1+y*cos(x));
h(x)=2.5*(2-x);},scale=2,set scale/.code={xdefmsc{#1}}]
begin{scope}[tdplot_main_coords]
begin{scope}[canvas is xy plane at z=0]
path[fill=orange!30] (0,0) circle (2);
coordinate (l) at (10:2);
coordinate (r) at (170:2);
draw[dashed,name path=back] (l) arc(10:170:2);
draw[thick,name path=front] (r) arc(170:370:2);
end{scope}
begin{scope}[on background layer]
draw[fill=orange!10] (l) -- (0,0,5) -- (r);
end{scope}
path[name path global=coat] (l) -- (0,0,5) -- (r);
pgfmathsetmacro{meps}{0}
%pgfmathsetmacro{msc}{0.75}
path[fill=blue] plot[variable=x,domain=-180:180,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
%pgfmathsetmacro{msc}{0.76}
fill[blue!60] plot[variable=x,domain=170:370,samples=72,set scale=0.76]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
--
plot[variable=x,domain=370:170,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle ;
pgfmathsetmacro{meps}{0.15}
path[fill=green!30!black] plot[variable=x,domain=-180:180,samples=72,set
scale=1.25]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
fill[green!70!black] plot[variable=x,domain=170:370,samples=72,set
scale=1.265] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=370:170,samples=72,set
scale=1.25] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
pgfmathsetmacro{meps}{1.5}
path[fill=red!80!black] plot[variable=x,domain=-70.6:70.6,samples=72,set
scale=3]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=red!80] plot[variable=x,domain=-70.6:10,samples=72,set
scale=3] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-69.6,samples=72,set
scale=3.05] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle;
pgfmathsetmacro{meps}{4}
path[fill=orange!80!black] plot[variable=x,domain=-51.4:51.4,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=orange!60] plot[variable=x,domain=-51.4:10,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-50,samples=72,set
scale=7.15]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))}) -- cycle;
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer















Here is a proposal. The function radius is taken from here, which might also be the source of your picture. However, the upper bounds of the last two plots, i.e. values like 69.6, are found by trial and error.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,backgrounds,intersections}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{70}{0}
begin{tikzpicture}[declare function={radius(x,y,z)=z/(1+y*cos(x));
h(x)=2.5*(2-x);},scale=2,set scale/.code={xdefmsc{#1}}]
begin{scope}[tdplot_main_coords]
begin{scope}[canvas is xy plane at z=0]
path[fill=orange!30] (0,0) circle (2);
coordinate (l) at (10:2);
coordinate (r) at (170:2);
draw[dashed,name path=back] (l) arc(10:170:2);
draw[thick,name path=front] (r) arc(170:370:2);
end{scope}
begin{scope}[on background layer]
draw[fill=orange!10] (l) -- (0,0,5) -- (r);
end{scope}
path[name path global=coat] (l) -- (0,0,5) -- (r);
pgfmathsetmacro{meps}{0}
%pgfmathsetmacro{msc}{0.75}
path[fill=blue] plot[variable=x,domain=-180:180,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
%pgfmathsetmacro{msc}{0.76}
fill[blue!60] plot[variable=x,domain=170:370,samples=72,set scale=0.76]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
--
plot[variable=x,domain=370:170,samples=72,set scale=0.75]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle ;
pgfmathsetmacro{meps}{0.15}
path[fill=green!30!black] plot[variable=x,domain=-180:180,samples=72,set
scale=1.25]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
fill[green!70!black] plot[variable=x,domain=170:370,samples=72,set
scale=1.265] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=370:170,samples=72,set
scale=1.25] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
pgfmathsetmacro{meps}{1.5}
path[fill=red!80!black] plot[variable=x,domain=-70.6:70.6,samples=72,set
scale=3]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=red!80] plot[variable=x,domain=-70.6:10,samples=72,set
scale=3] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-69.6,samples=72,set
scale=3.05] ({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- cycle;
pgfmathsetmacro{meps}{4}
path[fill=orange!80!black] plot[variable=x,domain=-51.4:51.4,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))});
path[fill=orange!60] plot[variable=x,domain=-51.4:10,samples=72,set
scale=7]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))})
-- plot[variable=x,domain=10:-50,samples=72,set
scale=7.15]
({radius(x,meps,msc)*cos(x)},
{radius(x,meps,msc))*sin(x)},{h(radius(x,meps,msc))}) -- cycle;
end{scope}
end{tikzpicture}
end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Oct 31 '18 at 0:37

























answered Oct 30 '18 at 4:56









marmotmarmot

93.8k4109208




93.8k4109208








  • 1





    For the record: Jake's patch is now incorporated in v3.1 of TikZ.

    – Stefan Pinnow
    Jan 15 at 19:21














  • 1





    For the record: Jake's patch is now incorporated in v3.1 of TikZ.

    – Stefan Pinnow
    Jan 15 at 19:21








1




1





For the record: Jake's patch is now incorporated in v3.1 of TikZ.

– Stefan Pinnow
Jan 15 at 19:21





For the record: Jake's patch is now incorporated in v3.1 of TikZ.

– Stefan Pinnow
Jan 15 at 19:21


















draft saved

draft discarded




















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f457452%2fdraw-the-four-conic-sections%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents