Show that $sqrt 5$ can be expressed as a polynomial in $e^{2pi i/5}$ over $Bbb Z$
$begingroup$
Question from a Qualifying Exam:
- Show that $sqrt 5$ can be expressed as a polynomial in $e^{(frac{2pi i}{5})}$ over $Bbb Z$
- If in a field the equation $x^2-5$ has no solution then $x^5-1$ also has no non-trivial solution.
I am unable to show how to find the polynomial
Please givesome hints
abstract-algebra field-theory
$endgroup$
add a comment |
$begingroup$
Question from a Qualifying Exam:
- Show that $sqrt 5$ can be expressed as a polynomial in $e^{(frac{2pi i}{5})}$ over $Bbb Z$
- If in a field the equation $x^2-5$ has no solution then $x^5-1$ also has no non-trivial solution.
I am unable to show how to find the polynomial
Please givesome hints
abstract-algebra field-theory
$endgroup$
$begingroup$
In the second question, did you mean to write "nontrivial solution"?
$endgroup$
– Ovi
Nov 26 '18 at 3:10
3
$begingroup$
you are missing the $i$ in the exponents of $e ; ; ; $
$endgroup$
– Will Jagy
Nov 26 '18 at 3:11
add a comment |
$begingroup$
Question from a Qualifying Exam:
- Show that $sqrt 5$ can be expressed as a polynomial in $e^{(frac{2pi i}{5})}$ over $Bbb Z$
- If in a field the equation $x^2-5$ has no solution then $x^5-1$ also has no non-trivial solution.
I am unable to show how to find the polynomial
Please givesome hints
abstract-algebra field-theory
$endgroup$
Question from a Qualifying Exam:
- Show that $sqrt 5$ can be expressed as a polynomial in $e^{(frac{2pi i}{5})}$ over $Bbb Z$
- If in a field the equation $x^2-5$ has no solution then $x^5-1$ also has no non-trivial solution.
I am unable to show how to find the polynomial
Please givesome hints
abstract-algebra field-theory
abstract-algebra field-theory
edited Nov 26 '18 at 3:33
Join_PhD
asked Nov 26 '18 at 3:08
Join_PhDJoin_PhD
3618
3618
$begingroup$
In the second question, did you mean to write "nontrivial solution"?
$endgroup$
– Ovi
Nov 26 '18 at 3:10
3
$begingroup$
you are missing the $i$ in the exponents of $e ; ; ; $
$endgroup$
– Will Jagy
Nov 26 '18 at 3:11
add a comment |
$begingroup$
In the second question, did you mean to write "nontrivial solution"?
$endgroup$
– Ovi
Nov 26 '18 at 3:10
3
$begingroup$
you are missing the $i$ in the exponents of $e ; ; ; $
$endgroup$
– Will Jagy
Nov 26 '18 at 3:11
$begingroup$
In the second question, did you mean to write "nontrivial solution"?
$endgroup$
– Ovi
Nov 26 '18 at 3:10
$begingroup$
In the second question, did you mean to write "nontrivial solution"?
$endgroup$
– Ovi
Nov 26 '18 at 3:10
3
3
$begingroup$
you are missing the $i$ in the exponents of $e ; ; ; $
$endgroup$
– Will Jagy
Nov 26 '18 at 3:11
$begingroup$
you are missing the $i$ in the exponents of $e ; ; ; $
$endgroup$
– Will Jagy
Nov 26 '18 at 3:11
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
To your first question: Here is a high-faluting answer. If $p$ is any odd
prime number (i.e., any prime number $>2$), then the Gauss
sum is defined to be the
number
begin{equation}
gleft( 1;pright) :=sum_{n=0}^{p-1}e^{2pi in^{2}/p}.
end{equation}
Gauss proved that
begin{equation}
gleft( 1;pright) =
begin{cases}
sqrt{p}, & text{if }pequiv1operatorname{mod}4;\
isqrt{p}, & text{if }pequiv3operatorname{mod}4
end{cases}
end{equation}
(and this has been re-proven many times since Gauss; see a post by David
Speyer on
SBSeminar
for my favorite proof, although he denotes $gleft( 1;pright) $ by
$gleft( zetaright) $ and defines it somewhat differently).
Applying this to $p=5$, we obtain $gleft( 1;5right) =sqrt{5}$ (since
$5equiv1operatorname{mod}4$). Hence,
begin{align*}
sqrt{5} & =gleft( 1;5right) =sum_{n=0}^{4}e^{2pi in^{2}/5}=e^{2pi
icdot0^{2}/5}+e^{2pi icdot1^{2}/5}+e^{2pi icdot2^{2}/5}+e^{2pi
icdot3^{2}/5}+e^{2pi icdot4^{2}/5}\
& =z^{0^{2}}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}},qquadtext{where
}z=e^{2pi i/5}.
end{align*}
This is, of course, a polynomial in $e^{2pi i/5}$ over $mathbb{Z}$. Hence,
your first question is answered.
To your second question: Let $K$ be a field. We shall show that if $x^{2}-5$
has no solution in $K$, then $x^{5}-1$ has no non-trivial solution in $K$.
Indeed, let us prove the contrapositive: Let us prove that if $x^{5}-1$ has a
non-trivial solution in $K$, then $x^{2}-5$ has a solution in $K$.
So we assume that $x^{5}-1$ has a non-trivial solution in $K$. Fix such a
solution, and denote it by $z$. Thus, $z^{5}-1=0$ but $zneq1$.
Inspired by the above answer to the first question, we set $w=z^{0^{2}
}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}}$. We shall now prove that
$w^{2}-5=0$.
Indeed, $z-1neq0$ (since $zneq1$). Hence, we can cancel $z-1$ from the
equality $left( z-1right) left( z^{4}+z^{3}+z^{2}+z+1right)
=z^{5}-1=0$. We thus obtain $z^{4}+z^{3}+z^{2}+z+1=0$, so that $z^{4}
=-z^{3}-z^{2}-z-1$. Also, from $z^{5}-1=0$, we obtain $z^{5}=1$, thus
$z^{8}=z^{3}$ and $z^{9}=z^{4}$ and $z^{16}=z^{11}=z^{6}=z$. Hence,
begin{align*}
w & =underbrace{z^{0^{2}}}_{=z^{0}=1}+underbrace{z^{1^{2}}}_{=z^{1}
=z}+underbrace{z^{2^{2}}}_{=z^{4}}+underbrace{z^{3^{2}}}_{=z^{9}=z^{4}
}+underbrace{z^{4^{2}}}_{=z^{16}=z}\
& =1+z+z^{4}+z^{4}+z=1+2z+2z^{4}.
end{align*}
Squaring this equality, we find
begin{align*}
w^{2} & =left( 1+2z+2z^{4}right) ^{2}=1+4z+4z^{2}+4z^{4}
+8underbrace{z^{5}}_{=1}+4underbrace{z^{8}}_{=z^{3}}\
& =1+4z+4z^{2}+4z^{4}+8+4z^{3}=5+4underbrace{left( z^{4}+z^{3}
+z^{2}+z+1right) }_{=0}=5.
end{align*}
In other words, $w^{2}-5=0$. Hence, $x^{2}-5$ has a solution in $K$ (namely,
$w$). This answers the second question.
$endgroup$
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
Let $w neq 1$ be a 5th root of unity in the first quadrant. Take $x = w + frac{1}{w} = w + w^4.$ Then
$x^2 = w^2 + 2 + frac{1}{w^2}.$ So,
$$ x^2 + x - 1 = w^2 + w + 1 + frac{1}{w} + frac{1}{w^2 } = 0. $$
As $x>0$ we have
$$ x = frac{-1 + sqrt 5}{2} $$
Then $$ 2x + 1 = sqrt 5 $$
$endgroup$
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013766%2fshow-that-sqrt-5-can-be-expressed-as-a-polynomial-in-e2-pi-i-5-over-bb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To your first question: Here is a high-faluting answer. If $p$ is any odd
prime number (i.e., any prime number $>2$), then the Gauss
sum is defined to be the
number
begin{equation}
gleft( 1;pright) :=sum_{n=0}^{p-1}e^{2pi in^{2}/p}.
end{equation}
Gauss proved that
begin{equation}
gleft( 1;pright) =
begin{cases}
sqrt{p}, & text{if }pequiv1operatorname{mod}4;\
isqrt{p}, & text{if }pequiv3operatorname{mod}4
end{cases}
end{equation}
(and this has been re-proven many times since Gauss; see a post by David
Speyer on
SBSeminar
for my favorite proof, although he denotes $gleft( 1;pright) $ by
$gleft( zetaright) $ and defines it somewhat differently).
Applying this to $p=5$, we obtain $gleft( 1;5right) =sqrt{5}$ (since
$5equiv1operatorname{mod}4$). Hence,
begin{align*}
sqrt{5} & =gleft( 1;5right) =sum_{n=0}^{4}e^{2pi in^{2}/5}=e^{2pi
icdot0^{2}/5}+e^{2pi icdot1^{2}/5}+e^{2pi icdot2^{2}/5}+e^{2pi
icdot3^{2}/5}+e^{2pi icdot4^{2}/5}\
& =z^{0^{2}}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}},qquadtext{where
}z=e^{2pi i/5}.
end{align*}
This is, of course, a polynomial in $e^{2pi i/5}$ over $mathbb{Z}$. Hence,
your first question is answered.
To your second question: Let $K$ be a field. We shall show that if $x^{2}-5$
has no solution in $K$, then $x^{5}-1$ has no non-trivial solution in $K$.
Indeed, let us prove the contrapositive: Let us prove that if $x^{5}-1$ has a
non-trivial solution in $K$, then $x^{2}-5$ has a solution in $K$.
So we assume that $x^{5}-1$ has a non-trivial solution in $K$. Fix such a
solution, and denote it by $z$. Thus, $z^{5}-1=0$ but $zneq1$.
Inspired by the above answer to the first question, we set $w=z^{0^{2}
}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}}$. We shall now prove that
$w^{2}-5=0$.
Indeed, $z-1neq0$ (since $zneq1$). Hence, we can cancel $z-1$ from the
equality $left( z-1right) left( z^{4}+z^{3}+z^{2}+z+1right)
=z^{5}-1=0$. We thus obtain $z^{4}+z^{3}+z^{2}+z+1=0$, so that $z^{4}
=-z^{3}-z^{2}-z-1$. Also, from $z^{5}-1=0$, we obtain $z^{5}=1$, thus
$z^{8}=z^{3}$ and $z^{9}=z^{4}$ and $z^{16}=z^{11}=z^{6}=z$. Hence,
begin{align*}
w & =underbrace{z^{0^{2}}}_{=z^{0}=1}+underbrace{z^{1^{2}}}_{=z^{1}
=z}+underbrace{z^{2^{2}}}_{=z^{4}}+underbrace{z^{3^{2}}}_{=z^{9}=z^{4}
}+underbrace{z^{4^{2}}}_{=z^{16}=z}\
& =1+z+z^{4}+z^{4}+z=1+2z+2z^{4}.
end{align*}
Squaring this equality, we find
begin{align*}
w^{2} & =left( 1+2z+2z^{4}right) ^{2}=1+4z+4z^{2}+4z^{4}
+8underbrace{z^{5}}_{=1}+4underbrace{z^{8}}_{=z^{3}}\
& =1+4z+4z^{2}+4z^{4}+8+4z^{3}=5+4underbrace{left( z^{4}+z^{3}
+z^{2}+z+1right) }_{=0}=5.
end{align*}
In other words, $w^{2}-5=0$. Hence, $x^{2}-5$ has a solution in $K$ (namely,
$w$). This answers the second question.
$endgroup$
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
To your first question: Here is a high-faluting answer. If $p$ is any odd
prime number (i.e., any prime number $>2$), then the Gauss
sum is defined to be the
number
begin{equation}
gleft( 1;pright) :=sum_{n=0}^{p-1}e^{2pi in^{2}/p}.
end{equation}
Gauss proved that
begin{equation}
gleft( 1;pright) =
begin{cases}
sqrt{p}, & text{if }pequiv1operatorname{mod}4;\
isqrt{p}, & text{if }pequiv3operatorname{mod}4
end{cases}
end{equation}
(and this has been re-proven many times since Gauss; see a post by David
Speyer on
SBSeminar
for my favorite proof, although he denotes $gleft( 1;pright) $ by
$gleft( zetaright) $ and defines it somewhat differently).
Applying this to $p=5$, we obtain $gleft( 1;5right) =sqrt{5}$ (since
$5equiv1operatorname{mod}4$). Hence,
begin{align*}
sqrt{5} & =gleft( 1;5right) =sum_{n=0}^{4}e^{2pi in^{2}/5}=e^{2pi
icdot0^{2}/5}+e^{2pi icdot1^{2}/5}+e^{2pi icdot2^{2}/5}+e^{2pi
icdot3^{2}/5}+e^{2pi icdot4^{2}/5}\
& =z^{0^{2}}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}},qquadtext{where
}z=e^{2pi i/5}.
end{align*}
This is, of course, a polynomial in $e^{2pi i/5}$ over $mathbb{Z}$. Hence,
your first question is answered.
To your second question: Let $K$ be a field. We shall show that if $x^{2}-5$
has no solution in $K$, then $x^{5}-1$ has no non-trivial solution in $K$.
Indeed, let us prove the contrapositive: Let us prove that if $x^{5}-1$ has a
non-trivial solution in $K$, then $x^{2}-5$ has a solution in $K$.
So we assume that $x^{5}-1$ has a non-trivial solution in $K$. Fix such a
solution, and denote it by $z$. Thus, $z^{5}-1=0$ but $zneq1$.
Inspired by the above answer to the first question, we set $w=z^{0^{2}
}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}}$. We shall now prove that
$w^{2}-5=0$.
Indeed, $z-1neq0$ (since $zneq1$). Hence, we can cancel $z-1$ from the
equality $left( z-1right) left( z^{4}+z^{3}+z^{2}+z+1right)
=z^{5}-1=0$. We thus obtain $z^{4}+z^{3}+z^{2}+z+1=0$, so that $z^{4}
=-z^{3}-z^{2}-z-1$. Also, from $z^{5}-1=0$, we obtain $z^{5}=1$, thus
$z^{8}=z^{3}$ and $z^{9}=z^{4}$ and $z^{16}=z^{11}=z^{6}=z$. Hence,
begin{align*}
w & =underbrace{z^{0^{2}}}_{=z^{0}=1}+underbrace{z^{1^{2}}}_{=z^{1}
=z}+underbrace{z^{2^{2}}}_{=z^{4}}+underbrace{z^{3^{2}}}_{=z^{9}=z^{4}
}+underbrace{z^{4^{2}}}_{=z^{16}=z}\
& =1+z+z^{4}+z^{4}+z=1+2z+2z^{4}.
end{align*}
Squaring this equality, we find
begin{align*}
w^{2} & =left( 1+2z+2z^{4}right) ^{2}=1+4z+4z^{2}+4z^{4}
+8underbrace{z^{5}}_{=1}+4underbrace{z^{8}}_{=z^{3}}\
& =1+4z+4z^{2}+4z^{4}+8+4z^{3}=5+4underbrace{left( z^{4}+z^{3}
+z^{2}+z+1right) }_{=0}=5.
end{align*}
In other words, $w^{2}-5=0$. Hence, $x^{2}-5$ has a solution in $K$ (namely,
$w$). This answers the second question.
$endgroup$
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
To your first question: Here is a high-faluting answer. If $p$ is any odd
prime number (i.e., any prime number $>2$), then the Gauss
sum is defined to be the
number
begin{equation}
gleft( 1;pright) :=sum_{n=0}^{p-1}e^{2pi in^{2}/p}.
end{equation}
Gauss proved that
begin{equation}
gleft( 1;pright) =
begin{cases}
sqrt{p}, & text{if }pequiv1operatorname{mod}4;\
isqrt{p}, & text{if }pequiv3operatorname{mod}4
end{cases}
end{equation}
(and this has been re-proven many times since Gauss; see a post by David
Speyer on
SBSeminar
for my favorite proof, although he denotes $gleft( 1;pright) $ by
$gleft( zetaright) $ and defines it somewhat differently).
Applying this to $p=5$, we obtain $gleft( 1;5right) =sqrt{5}$ (since
$5equiv1operatorname{mod}4$). Hence,
begin{align*}
sqrt{5} & =gleft( 1;5right) =sum_{n=0}^{4}e^{2pi in^{2}/5}=e^{2pi
icdot0^{2}/5}+e^{2pi icdot1^{2}/5}+e^{2pi icdot2^{2}/5}+e^{2pi
icdot3^{2}/5}+e^{2pi icdot4^{2}/5}\
& =z^{0^{2}}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}},qquadtext{where
}z=e^{2pi i/5}.
end{align*}
This is, of course, a polynomial in $e^{2pi i/5}$ over $mathbb{Z}$. Hence,
your first question is answered.
To your second question: Let $K$ be a field. We shall show that if $x^{2}-5$
has no solution in $K$, then $x^{5}-1$ has no non-trivial solution in $K$.
Indeed, let us prove the contrapositive: Let us prove that if $x^{5}-1$ has a
non-trivial solution in $K$, then $x^{2}-5$ has a solution in $K$.
So we assume that $x^{5}-1$ has a non-trivial solution in $K$. Fix such a
solution, and denote it by $z$. Thus, $z^{5}-1=0$ but $zneq1$.
Inspired by the above answer to the first question, we set $w=z^{0^{2}
}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}}$. We shall now prove that
$w^{2}-5=0$.
Indeed, $z-1neq0$ (since $zneq1$). Hence, we can cancel $z-1$ from the
equality $left( z-1right) left( z^{4}+z^{3}+z^{2}+z+1right)
=z^{5}-1=0$. We thus obtain $z^{4}+z^{3}+z^{2}+z+1=0$, so that $z^{4}
=-z^{3}-z^{2}-z-1$. Also, from $z^{5}-1=0$, we obtain $z^{5}=1$, thus
$z^{8}=z^{3}$ and $z^{9}=z^{4}$ and $z^{16}=z^{11}=z^{6}=z$. Hence,
begin{align*}
w & =underbrace{z^{0^{2}}}_{=z^{0}=1}+underbrace{z^{1^{2}}}_{=z^{1}
=z}+underbrace{z^{2^{2}}}_{=z^{4}}+underbrace{z^{3^{2}}}_{=z^{9}=z^{4}
}+underbrace{z^{4^{2}}}_{=z^{16}=z}\
& =1+z+z^{4}+z^{4}+z=1+2z+2z^{4}.
end{align*}
Squaring this equality, we find
begin{align*}
w^{2} & =left( 1+2z+2z^{4}right) ^{2}=1+4z+4z^{2}+4z^{4}
+8underbrace{z^{5}}_{=1}+4underbrace{z^{8}}_{=z^{3}}\
& =1+4z+4z^{2}+4z^{4}+8+4z^{3}=5+4underbrace{left( z^{4}+z^{3}
+z^{2}+z+1right) }_{=0}=5.
end{align*}
In other words, $w^{2}-5=0$. Hence, $x^{2}-5$ has a solution in $K$ (namely,
$w$). This answers the second question.
$endgroup$
To your first question: Here is a high-faluting answer. If $p$ is any odd
prime number (i.e., any prime number $>2$), then the Gauss
sum is defined to be the
number
begin{equation}
gleft( 1;pright) :=sum_{n=0}^{p-1}e^{2pi in^{2}/p}.
end{equation}
Gauss proved that
begin{equation}
gleft( 1;pright) =
begin{cases}
sqrt{p}, & text{if }pequiv1operatorname{mod}4;\
isqrt{p}, & text{if }pequiv3operatorname{mod}4
end{cases}
end{equation}
(and this has been re-proven many times since Gauss; see a post by David
Speyer on
SBSeminar
for my favorite proof, although he denotes $gleft( 1;pright) $ by
$gleft( zetaright) $ and defines it somewhat differently).
Applying this to $p=5$, we obtain $gleft( 1;5right) =sqrt{5}$ (since
$5equiv1operatorname{mod}4$). Hence,
begin{align*}
sqrt{5} & =gleft( 1;5right) =sum_{n=0}^{4}e^{2pi in^{2}/5}=e^{2pi
icdot0^{2}/5}+e^{2pi icdot1^{2}/5}+e^{2pi icdot2^{2}/5}+e^{2pi
icdot3^{2}/5}+e^{2pi icdot4^{2}/5}\
& =z^{0^{2}}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}},qquadtext{where
}z=e^{2pi i/5}.
end{align*}
This is, of course, a polynomial in $e^{2pi i/5}$ over $mathbb{Z}$. Hence,
your first question is answered.
To your second question: Let $K$ be a field. We shall show that if $x^{2}-5$
has no solution in $K$, then $x^{5}-1$ has no non-trivial solution in $K$.
Indeed, let us prove the contrapositive: Let us prove that if $x^{5}-1$ has a
non-trivial solution in $K$, then $x^{2}-5$ has a solution in $K$.
So we assume that $x^{5}-1$ has a non-trivial solution in $K$. Fix such a
solution, and denote it by $z$. Thus, $z^{5}-1=0$ but $zneq1$.
Inspired by the above answer to the first question, we set $w=z^{0^{2}
}+z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+z^{4^{2}}$. We shall now prove that
$w^{2}-5=0$.
Indeed, $z-1neq0$ (since $zneq1$). Hence, we can cancel $z-1$ from the
equality $left( z-1right) left( z^{4}+z^{3}+z^{2}+z+1right)
=z^{5}-1=0$. We thus obtain $z^{4}+z^{3}+z^{2}+z+1=0$, so that $z^{4}
=-z^{3}-z^{2}-z-1$. Also, from $z^{5}-1=0$, we obtain $z^{5}=1$, thus
$z^{8}=z^{3}$ and $z^{9}=z^{4}$ and $z^{16}=z^{11}=z^{6}=z$. Hence,
begin{align*}
w & =underbrace{z^{0^{2}}}_{=z^{0}=1}+underbrace{z^{1^{2}}}_{=z^{1}
=z}+underbrace{z^{2^{2}}}_{=z^{4}}+underbrace{z^{3^{2}}}_{=z^{9}=z^{4}
}+underbrace{z^{4^{2}}}_{=z^{16}=z}\
& =1+z+z^{4}+z^{4}+z=1+2z+2z^{4}.
end{align*}
Squaring this equality, we find
begin{align*}
w^{2} & =left( 1+2z+2z^{4}right) ^{2}=1+4z+4z^{2}+4z^{4}
+8underbrace{z^{5}}_{=1}+4underbrace{z^{8}}_{=z^{3}}\
& =1+4z+4z^{2}+4z^{4}+8+4z^{3}=5+4underbrace{left( z^{4}+z^{3}
+z^{2}+z+1right) }_{=0}=5.
end{align*}
In other words, $w^{2}-5=0$. Hence, $x^{2}-5$ has a solution in $K$ (namely,
$w$). This answers the second question.
answered Nov 26 '18 at 3:32
darij grinbergdarij grinberg
10.5k33062
10.5k33062
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
$begingroup$
Thank you very much for the answer
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
Let $w neq 1$ be a 5th root of unity in the first quadrant. Take $x = w + frac{1}{w} = w + w^4.$ Then
$x^2 = w^2 + 2 + frac{1}{w^2}.$ So,
$$ x^2 + x - 1 = w^2 + w + 1 + frac{1}{w} + frac{1}{w^2 } = 0. $$
As $x>0$ we have
$$ x = frac{-1 + sqrt 5}{2} $$
Then $$ 2x + 1 = sqrt 5 $$
$endgroup$
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
Let $w neq 1$ be a 5th root of unity in the first quadrant. Take $x = w + frac{1}{w} = w + w^4.$ Then
$x^2 = w^2 + 2 + frac{1}{w^2}.$ So,
$$ x^2 + x - 1 = w^2 + w + 1 + frac{1}{w} + frac{1}{w^2 } = 0. $$
As $x>0$ we have
$$ x = frac{-1 + sqrt 5}{2} $$
Then $$ 2x + 1 = sqrt 5 $$
$endgroup$
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
Let $w neq 1$ be a 5th root of unity in the first quadrant. Take $x = w + frac{1}{w} = w + w^4.$ Then
$x^2 = w^2 + 2 + frac{1}{w^2}.$ So,
$$ x^2 + x - 1 = w^2 + w + 1 + frac{1}{w} + frac{1}{w^2 } = 0. $$
As $x>0$ we have
$$ x = frac{-1 + sqrt 5}{2} $$
Then $$ 2x + 1 = sqrt 5 $$
$endgroup$
Let $w neq 1$ be a 5th root of unity in the first quadrant. Take $x = w + frac{1}{w} = w + w^4.$ Then
$x^2 = w^2 + 2 + frac{1}{w^2}.$ So,
$$ x^2 + x - 1 = w^2 + w + 1 + frac{1}{w} + frac{1}{w^2 } = 0. $$
As $x>0$ we have
$$ x = frac{-1 + sqrt 5}{2} $$
Then $$ 2x + 1 = sqrt 5 $$
answered Nov 26 '18 at 3:20
Will JagyWill Jagy
102k5101199
102k5101199
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
$begingroup$
Thank you very much
$endgroup$
– Join_PhD
Nov 26 '18 at 4:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013766%2fshow-that-sqrt-5-can-be-expressed-as-a-polynomial-in-e2-pi-i-5-over-bb%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In the second question, did you mean to write "nontrivial solution"?
$endgroup$
– Ovi
Nov 26 '18 at 3:10
3
$begingroup$
you are missing the $i$ in the exponents of $e ; ; ; $
$endgroup$
– Will Jagy
Nov 26 '18 at 3:11