Select two best classifier using F1-score,Recall and precision












3














I have three classifiers that classify same dataset with these results:



classifier A:
precision recall f1-score
micro avg 0.36 0.36 0.36
macro avg 0.38 0.43 0.36
weighted avg 0.36 0.36 0.32

classifier B:
precision recall f1-score
micro avg 0.55 0.55 0.55
macro avg 0.60 0.60 0.56
weighted avg 0.61 0.55 0.53

classifier C:
precision recall f1-score
micro avg 0.34 0.34 0.34
macro avg 0.36 0.38 0.32
weighted avg 0.39 0.34 0.32


I want two select two best of them, and I know F1-score is a parameter for compare the classifiers because of its harmony between precision and recall.
So, at first I select classifier B for its best F1-score. for next, both A and C have a same F1-measure,
I want to ask how can I select between them?










share|improve this question






















  • Why is accuracy not the best measure for assessing classification models? Everything in that thread applies equally to F1, recall and precision. See also Classification probability threshold.
    – Stephan Kolassa
    Dec 28 '18 at 13:31
















3














I have three classifiers that classify same dataset with these results:



classifier A:
precision recall f1-score
micro avg 0.36 0.36 0.36
macro avg 0.38 0.43 0.36
weighted avg 0.36 0.36 0.32

classifier B:
precision recall f1-score
micro avg 0.55 0.55 0.55
macro avg 0.60 0.60 0.56
weighted avg 0.61 0.55 0.53

classifier C:
precision recall f1-score
micro avg 0.34 0.34 0.34
macro avg 0.36 0.38 0.32
weighted avg 0.39 0.34 0.32


I want two select two best of them, and I know F1-score is a parameter for compare the classifiers because of its harmony between precision and recall.
So, at first I select classifier B for its best F1-score. for next, both A and C have a same F1-measure,
I want to ask how can I select between them?










share|improve this question






















  • Why is accuracy not the best measure for assessing classification models? Everything in that thread applies equally to F1, recall and precision. See also Classification probability threshold.
    – Stephan Kolassa
    Dec 28 '18 at 13:31














3












3








3







I have three classifiers that classify same dataset with these results:



classifier A:
precision recall f1-score
micro avg 0.36 0.36 0.36
macro avg 0.38 0.43 0.36
weighted avg 0.36 0.36 0.32

classifier B:
precision recall f1-score
micro avg 0.55 0.55 0.55
macro avg 0.60 0.60 0.56
weighted avg 0.61 0.55 0.53

classifier C:
precision recall f1-score
micro avg 0.34 0.34 0.34
macro avg 0.36 0.38 0.32
weighted avg 0.39 0.34 0.32


I want two select two best of them, and I know F1-score is a parameter for compare the classifiers because of its harmony between precision and recall.
So, at first I select classifier B for its best F1-score. for next, both A and C have a same F1-measure,
I want to ask how can I select between them?










share|improve this question













I have three classifiers that classify same dataset with these results:



classifier A:
precision recall f1-score
micro avg 0.36 0.36 0.36
macro avg 0.38 0.43 0.36
weighted avg 0.36 0.36 0.32

classifier B:
precision recall f1-score
micro avg 0.55 0.55 0.55
macro avg 0.60 0.60 0.56
weighted avg 0.61 0.55 0.53

classifier C:
precision recall f1-score
micro avg 0.34 0.34 0.34
macro avg 0.36 0.38 0.32
weighted avg 0.39 0.34 0.32


I want two select two best of them, and I know F1-score is a parameter for compare the classifiers because of its harmony between precision and recall.
So, at first I select classifier B for its best F1-score. for next, both A and C have a same F1-measure,
I want to ask how can I select between them?







machine-learning python classification






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Dec 28 '18 at 11:47









Saha

266




266












  • Why is accuracy not the best measure for assessing classification models? Everything in that thread applies equally to F1, recall and precision. See also Classification probability threshold.
    – Stephan Kolassa
    Dec 28 '18 at 13:31


















  • Why is accuracy not the best measure for assessing classification models? Everything in that thread applies equally to F1, recall and precision. See also Classification probability threshold.
    – Stephan Kolassa
    Dec 28 '18 at 13:31
















Why is accuracy not the best measure for assessing classification models? Everything in that thread applies equally to F1, recall and precision. See also Classification probability threshold.
– Stephan Kolassa
Dec 28 '18 at 13:31




Why is accuracy not the best measure for assessing classification models? Everything in that thread applies equally to F1, recall and precision. See also Classification probability threshold.
– Stephan Kolassa
Dec 28 '18 at 13:31










2 Answers
2






active

oldest

votes


















4














f1-score combines precision and recall in a single figure. As both are pretty similar in A and C cases, f1-score is similar too.



Your choice depends on what it is less harmful in your categorization: false positives or false negatives.



I do recommend you to read the 3rd chapter of "DEEP LEARNING:From Basics to Practice" volume 1 by Andrew Glassner. There you have the three concepts (precision, recall and f1-score) described in a very illustrative way.






share|improve this answer





















  • they are not comparable if we dont have FP or FN?
    – Saha
    Dec 28 '18 at 12:07










  • You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
    – David
    Dec 29 '18 at 8:16



















1














It depends on your application. Assume that you design a classifier model to predict whether a person has cancer. If you wanna say confidently that a person has cancer, you probably prefer a classifier with high precision.
On the other hand, if you want to make sure all people with cancer will be caught, you probably prefer a classifier with high recall.






share|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "557"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f43240%2fselect-two-best-classifier-using-f1-score-recall-and-precision%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4














    f1-score combines precision and recall in a single figure. As both are pretty similar in A and C cases, f1-score is similar too.



    Your choice depends on what it is less harmful in your categorization: false positives or false negatives.



    I do recommend you to read the 3rd chapter of "DEEP LEARNING:From Basics to Practice" volume 1 by Andrew Glassner. There you have the three concepts (precision, recall and f1-score) described in a very illustrative way.






    share|improve this answer





















    • they are not comparable if we dont have FP or FN?
      – Saha
      Dec 28 '18 at 12:07










    • You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
      – David
      Dec 29 '18 at 8:16
















    4














    f1-score combines precision and recall in a single figure. As both are pretty similar in A and C cases, f1-score is similar too.



    Your choice depends on what it is less harmful in your categorization: false positives or false negatives.



    I do recommend you to read the 3rd chapter of "DEEP LEARNING:From Basics to Practice" volume 1 by Andrew Glassner. There you have the three concepts (precision, recall and f1-score) described in a very illustrative way.






    share|improve this answer





















    • they are not comparable if we dont have FP or FN?
      – Saha
      Dec 28 '18 at 12:07










    • You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
      – David
      Dec 29 '18 at 8:16














    4












    4








    4






    f1-score combines precision and recall in a single figure. As both are pretty similar in A and C cases, f1-score is similar too.



    Your choice depends on what it is less harmful in your categorization: false positives or false negatives.



    I do recommend you to read the 3rd chapter of "DEEP LEARNING:From Basics to Practice" volume 1 by Andrew Glassner. There you have the three concepts (precision, recall and f1-score) described in a very illustrative way.






    share|improve this answer












    f1-score combines precision and recall in a single figure. As both are pretty similar in A and C cases, f1-score is similar too.



    Your choice depends on what it is less harmful in your categorization: false positives or false negatives.



    I do recommend you to read the 3rd chapter of "DEEP LEARNING:From Basics to Practice" volume 1 by Andrew Glassner. There you have the three concepts (precision, recall and f1-score) described in a very illustrative way.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Dec 28 '18 at 12:03









    David

    562




    562












    • they are not comparable if we dont have FP or FN?
      – Saha
      Dec 28 '18 at 12:07










    • You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
      – David
      Dec 29 '18 at 8:16


















    • they are not comparable if we dont have FP or FN?
      – Saha
      Dec 28 '18 at 12:07










    • You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
      – David
      Dec 29 '18 at 8:16
















    they are not comparable if we dont have FP or FN?
    – Saha
    Dec 28 '18 at 12:07




    they are not comparable if we dont have FP or FN?
    – Saha
    Dec 28 '18 at 12:07












    You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
    – David
    Dec 29 '18 at 8:16




    You do not need direct access to FN or FN values. Precision and recall only varies in a part of their fraction formulas which includes FN or FP, so your displayed values reflect their relationship. What Nga Dao and I mean is that your choice depends on the impact of false positives or false negatives in your system. Nga Dao example is quite nice.
    – David
    Dec 29 '18 at 8:16











    1














    It depends on your application. Assume that you design a classifier model to predict whether a person has cancer. If you wanna say confidently that a person has cancer, you probably prefer a classifier with high precision.
    On the other hand, if you want to make sure all people with cancer will be caught, you probably prefer a classifier with high recall.






    share|improve this answer


























      1














      It depends on your application. Assume that you design a classifier model to predict whether a person has cancer. If you wanna say confidently that a person has cancer, you probably prefer a classifier with high precision.
      On the other hand, if you want to make sure all people with cancer will be caught, you probably prefer a classifier with high recall.






      share|improve this answer
























        1












        1








        1






        It depends on your application. Assume that you design a classifier model to predict whether a person has cancer. If you wanna say confidently that a person has cancer, you probably prefer a classifier with high precision.
        On the other hand, if you want to make sure all people with cancer will be caught, you probably prefer a classifier with high recall.






        share|improve this answer












        It depends on your application. Assume that you design a classifier model to predict whether a person has cancer. If you wanna say confidently that a person has cancer, you probably prefer a classifier with high precision.
        On the other hand, if you want to make sure all people with cancer will be caught, you probably prefer a classifier with high recall.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Dec 28 '18 at 13:38









        Nga Dao

        1495




        1495






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Data Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f43240%2fselect-two-best-classifier-using-f1-score-recall-and-precision%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents