Average Value of a Line Integral












1














I'm having quite a hard time calculating the average value of a line integral.



Given the surface $f(x,y) = sqrt{16 + 36y^{2/3}}$ and the curve $y = x^{3/2}$, I need to calculate the average value of the integral of the surface for $0 leq x leq 13$



I start by parameterizing the curve and the surface for $0 leq t leq 13:



$begin{align}
r(t) &= langle t, t^{3/2} rangle \
f(t) &= sqrt{16+36t} \
end{align}$



And calculate a few things I'll need later:



$begin{align}
r'(t) &= langle 1, frac{3}{2}t^{1/2} rangle \
left|r'(t)right| &= sqrt{ 1 + frac{9}{4}t } \
end{align}$



Next, I calculate the line integral:



$begin{align}
&int_0^{13} f(t) left|r'(t)right| dt \
&int_0^{13} sqrt{16+36t} sqrt{ 1 + frac{9}{4}t } dt \
2 &int_0^{13} sqrt{4+9t} sqrt{ 1 + frac{9}{4}t } dt \
2 &int_0^{13} sqrt{ frac{4}{4} (4+9t) } sqrt{ 1 + frac{9}{4}t } dt \
4 &int_0^{13} sqrt{ 1 + frac{9}{4}t } sqrt{ 1 + frac{9}{4}t } dt \
4 &int_0^{13} 1 + frac{9}{4}t dt \
4 &left( t + frac{9}{8}t^2right|_0^{13} \
4 &left( 13 + frac{9}{8}13^2right) \
&frac{1625}{2} \
end{align}$



Then, I calculate the length of the curve:



$begin{align}
L &= int_0^{13} sqrt{1 + [r'(t)]^2} dx \
L &= int_0^{13} sqrt{1 + 1 + frac{9}{4}t} dx \
L &= int_0^{13} sqrt{2 + frac{9}{4}t} dx \
end{align}$



Letting $u = 2 + 9/4 t$



$begin{align}
L &= frac{4}{9} int_2^{125 / 4} u^{1/2} du \
L &= frac{8}{27} left( u^{3/2} right|_{ 2}^{ 125 / 4} \
L &= frac{8}{27} left[ left(frac{125}{4}right)^{3/2} - 2^{3/2} right] \
L &= frac{625 sqrt{5} - 16 sqrt{2} }{27} \
end{align}$



Then, dividing the integral by the length of the curve gives a gnarly, incorrect mess.



What am I not understanding here? Are there algebra errors? Errors in the calculus?










share|cite|improve this question



























    1














    I'm having quite a hard time calculating the average value of a line integral.



    Given the surface $f(x,y) = sqrt{16 + 36y^{2/3}}$ and the curve $y = x^{3/2}$, I need to calculate the average value of the integral of the surface for $0 leq x leq 13$



    I start by parameterizing the curve and the surface for $0 leq t leq 13:



    $begin{align}
    r(t) &= langle t, t^{3/2} rangle \
    f(t) &= sqrt{16+36t} \
    end{align}$



    And calculate a few things I'll need later:



    $begin{align}
    r'(t) &= langle 1, frac{3}{2}t^{1/2} rangle \
    left|r'(t)right| &= sqrt{ 1 + frac{9}{4}t } \
    end{align}$



    Next, I calculate the line integral:



    $begin{align}
    &int_0^{13} f(t) left|r'(t)right| dt \
    &int_0^{13} sqrt{16+36t} sqrt{ 1 + frac{9}{4}t } dt \
    2 &int_0^{13} sqrt{4+9t} sqrt{ 1 + frac{9}{4}t } dt \
    2 &int_0^{13} sqrt{ frac{4}{4} (4+9t) } sqrt{ 1 + frac{9}{4}t } dt \
    4 &int_0^{13} sqrt{ 1 + frac{9}{4}t } sqrt{ 1 + frac{9}{4}t } dt \
    4 &int_0^{13} 1 + frac{9}{4}t dt \
    4 &left( t + frac{9}{8}t^2right|_0^{13} \
    4 &left( 13 + frac{9}{8}13^2right) \
    &frac{1625}{2} \
    end{align}$



    Then, I calculate the length of the curve:



    $begin{align}
    L &= int_0^{13} sqrt{1 + [r'(t)]^2} dx \
    L &= int_0^{13} sqrt{1 + 1 + frac{9}{4}t} dx \
    L &= int_0^{13} sqrt{2 + frac{9}{4}t} dx \
    end{align}$



    Letting $u = 2 + 9/4 t$



    $begin{align}
    L &= frac{4}{9} int_2^{125 / 4} u^{1/2} du \
    L &= frac{8}{27} left( u^{3/2} right|_{ 2}^{ 125 / 4} \
    L &= frac{8}{27} left[ left(frac{125}{4}right)^{3/2} - 2^{3/2} right] \
    L &= frac{625 sqrt{5} - 16 sqrt{2} }{27} \
    end{align}$



    Then, dividing the integral by the length of the curve gives a gnarly, incorrect mess.



    What am I not understanding here? Are there algebra errors? Errors in the calculus?










    share|cite|improve this question

























      1












      1








      1







      I'm having quite a hard time calculating the average value of a line integral.



      Given the surface $f(x,y) = sqrt{16 + 36y^{2/3}}$ and the curve $y = x^{3/2}$, I need to calculate the average value of the integral of the surface for $0 leq x leq 13$



      I start by parameterizing the curve and the surface for $0 leq t leq 13:



      $begin{align}
      r(t) &= langle t, t^{3/2} rangle \
      f(t) &= sqrt{16+36t} \
      end{align}$



      And calculate a few things I'll need later:



      $begin{align}
      r'(t) &= langle 1, frac{3}{2}t^{1/2} rangle \
      left|r'(t)right| &= sqrt{ 1 + frac{9}{4}t } \
      end{align}$



      Next, I calculate the line integral:



      $begin{align}
      &int_0^{13} f(t) left|r'(t)right| dt \
      &int_0^{13} sqrt{16+36t} sqrt{ 1 + frac{9}{4}t } dt \
      2 &int_0^{13} sqrt{4+9t} sqrt{ 1 + frac{9}{4}t } dt \
      2 &int_0^{13} sqrt{ frac{4}{4} (4+9t) } sqrt{ 1 + frac{9}{4}t } dt \
      4 &int_0^{13} sqrt{ 1 + frac{9}{4}t } sqrt{ 1 + frac{9}{4}t } dt \
      4 &int_0^{13} 1 + frac{9}{4}t dt \
      4 &left( t + frac{9}{8}t^2right|_0^{13} \
      4 &left( 13 + frac{9}{8}13^2right) \
      &frac{1625}{2} \
      end{align}$



      Then, I calculate the length of the curve:



      $begin{align}
      L &= int_0^{13} sqrt{1 + [r'(t)]^2} dx \
      L &= int_0^{13} sqrt{1 + 1 + frac{9}{4}t} dx \
      L &= int_0^{13} sqrt{2 + frac{9}{4}t} dx \
      end{align}$



      Letting $u = 2 + 9/4 t$



      $begin{align}
      L &= frac{4}{9} int_2^{125 / 4} u^{1/2} du \
      L &= frac{8}{27} left( u^{3/2} right|_{ 2}^{ 125 / 4} \
      L &= frac{8}{27} left[ left(frac{125}{4}right)^{3/2} - 2^{3/2} right] \
      L &= frac{625 sqrt{5} - 16 sqrt{2} }{27} \
      end{align}$



      Then, dividing the integral by the length of the curve gives a gnarly, incorrect mess.



      What am I not understanding here? Are there algebra errors? Errors in the calculus?










      share|cite|improve this question













      I'm having quite a hard time calculating the average value of a line integral.



      Given the surface $f(x,y) = sqrt{16 + 36y^{2/3}}$ and the curve $y = x^{3/2}$, I need to calculate the average value of the integral of the surface for $0 leq x leq 13$



      I start by parameterizing the curve and the surface for $0 leq t leq 13:



      $begin{align}
      r(t) &= langle t, t^{3/2} rangle \
      f(t) &= sqrt{16+36t} \
      end{align}$



      And calculate a few things I'll need later:



      $begin{align}
      r'(t) &= langle 1, frac{3}{2}t^{1/2} rangle \
      left|r'(t)right| &= sqrt{ 1 + frac{9}{4}t } \
      end{align}$



      Next, I calculate the line integral:



      $begin{align}
      &int_0^{13} f(t) left|r'(t)right| dt \
      &int_0^{13} sqrt{16+36t} sqrt{ 1 + frac{9}{4}t } dt \
      2 &int_0^{13} sqrt{4+9t} sqrt{ 1 + frac{9}{4}t } dt \
      2 &int_0^{13} sqrt{ frac{4}{4} (4+9t) } sqrt{ 1 + frac{9}{4}t } dt \
      4 &int_0^{13} sqrt{ 1 + frac{9}{4}t } sqrt{ 1 + frac{9}{4}t } dt \
      4 &int_0^{13} 1 + frac{9}{4}t dt \
      4 &left( t + frac{9}{8}t^2right|_0^{13} \
      4 &left( 13 + frac{9}{8}13^2right) \
      &frac{1625}{2} \
      end{align}$



      Then, I calculate the length of the curve:



      $begin{align}
      L &= int_0^{13} sqrt{1 + [r'(t)]^2} dx \
      L &= int_0^{13} sqrt{1 + 1 + frac{9}{4}t} dx \
      L &= int_0^{13} sqrt{2 + frac{9}{4}t} dx \
      end{align}$



      Letting $u = 2 + 9/4 t$



      $begin{align}
      L &= frac{4}{9} int_2^{125 / 4} u^{1/2} du \
      L &= frac{8}{27} left( u^{3/2} right|_{ 2}^{ 125 / 4} \
      L &= frac{8}{27} left[ left(frac{125}{4}right)^{3/2} - 2^{3/2} right] \
      L &= frac{625 sqrt{5} - 16 sqrt{2} }{27} \
      end{align}$



      Then, dividing the integral by the length of the curve gives a gnarly, incorrect mess.



      What am I not understanding here? Are there algebra errors? Errors in the calculus?







      integration multivariable-calculus average curves






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 15 '16 at 19:00









      StudentsTea

      7862722




      7862722






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1744155%2faverage-value-of-a-line-integral%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1744155%2faverage-value-of-a-line-integral%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents