Reflecting a line and/or point with named coordinates












5














This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?



documentclass[tikz]{standalone}

begin{document}
begin{tikzpicture}[scale=0.55]
coordinate (A) at (0,0);
coordinate (B) at (1,1);
coordinate (C) at (1,2);
coordinate (D) at (2,0);
coordinate (E) at (2,3);

draw[blue] (B)--(A)--(C);
draw[red] (D)--(E);
end{tikzpicture}
end{document}









share|improve this question





























    5














    This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?



    documentclass[tikz]{standalone}

    begin{document}
    begin{tikzpicture}[scale=0.55]
    coordinate (A) at (0,0);
    coordinate (B) at (1,1);
    coordinate (C) at (1,2);
    coordinate (D) at (2,0);
    coordinate (E) at (2,3);

    draw[blue] (B)--(A)--(C);
    draw[red] (D)--(E);
    end{tikzpicture}
    end{document}









    share|improve this question



























      5












      5








      5


      0





      This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?



      documentclass[tikz]{standalone}

      begin{document}
      begin{tikzpicture}[scale=0.55]
      coordinate (A) at (0,0);
      coordinate (B) at (1,1);
      coordinate (C) at (1,2);
      coordinate (D) at (2,0);
      coordinate (E) at (2,3);

      draw[blue] (B)--(A)--(C);
      draw[red] (D)--(E);
      end{tikzpicture}
      end{document}









      share|improve this question















      This code does not work with named coordinates (such as the following code). How can I reflect the blue line over the red line by using coordinate names. And how do I reflect just a named coordinate?



      documentclass[tikz]{standalone}

      begin{document}
      begin{tikzpicture}[scale=0.55]
      coordinate (A) at (0,0);
      coordinate (B) at (1,1);
      coordinate (C) at (1,2);
      coordinate (D) at (2,0);
      coordinate (E) at (2,3);

      draw[blue] (B)--(A)--(C);
      draw[red] (D)--(E);
      end{tikzpicture}
      end{document}






      tikz-pgf






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Dec 28 '18 at 15:52

























      asked Dec 25 '18 at 15:43









      blackened

      1,449714




      1,449714






















          3 Answers
          3






          active

          oldest

          votes


















          3














          This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc.) The ordering indicates a ranking of these options.



          First option: (ab)use show path construction. (Problems: one has to cheat with the colors and also this is not one path but two of them.)



          documentclass[tikz,border=3.14mm]{standalone}
          usetikzlibrary{decorations.pathreplacing,calc}
          makeatletter
          tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
          show path construction,
          lineto code={draw[tikz@textcolor]
          ($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
          -- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
          makeatother
          begin{document}
          begin{tikzpicture}[scale=0.55]
          coordinate (A) at (0,0);
          coordinate (B) at (1,1);
          coordinate (C) at (1,2);
          coordinate (D) at (2,0);
          coordinate (E) at (2,3);
          draw[blue] (B)--(A)--(C);
          draw[red] (D)--(E);
          draw[blue,reflect at=D--E] (B)--(A)--(C);
          end{tikzpicture}
          end{document}


          enter image description here



          A slight modification thereof does point reflections.



          documentclass[tikz,border=3.14mm]{standalone}
          usetikzlibrary{decorations.pathreplacing,calc}
          makeatletter
          tikzset{point reflect at/.style args={#1}{decorate,decoration={
          show path construction,
          lineto code={draw[tikz@textcolor]
          ($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
          -- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
          makeatother
          begin{document}
          begin{tikzpicture}[scale=0.55]
          path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
          (2,3) coordinate (D);
          draw[blue] (B)--(A)--(C);
          fill[red] (D) circle(1pt);
          draw[blue,point reflect at=D] (B)--(A)--(C);
          end{tikzpicture}
          end{document}


          enter image description here



          Second option: Change the to path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)



          documentclass[tikz]{standalone}
          usetikzlibrary{calc}
          tikzset{reflect at/.style args={#1--#2}{to path={%
          ($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
          -- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
          }}}
          begin{document}
          begin{tikzpicture}[scale=0.55]
          coordinate (A) at (0,0);
          coordinate (B) at (1,1);
          coordinate (C) at (1,2);
          coordinate (D) at (2,0);
          coordinate (E) at (2,3);

          draw[blue] (B)--(A)--(C);
          draw[red] (D)--(E);
          draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
          end{tikzpicture}
          end{document}


          enter image description here



          Third option: More core-level. (Problem: doesn't work with rescaling things.)



          documentclass[tikz]{standalone}
          makeatletter
          tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
          pgfutil@tempdima=pgf@x
          pgfutil@tempdimb=pgf@y
          pgfpointanchor{#1}{center}
          pgf@xa=pgf@x
          pgf@ya=pgf@y
          pgfpointanchor{#2}{center}
          pgf@xb=pgf@x
          pgf@yb=pgf@y
          pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
          advancepgf@xb by-pgf@xa
          advancepgf@yb by-pgf@ya
          pgfutil@tempdima=tmptpgf@yb
          pgfutil@tempdimb=-tmptpgf@xb
          },
          mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
          yshift=pgfutil@tempdimb}}
          makeatother
          begin{document}
          begin{tikzpicture}[scale=1]
          coordinate (A) at (0,0);
          coordinate (B) at (1,1);
          coordinate (C) at (1,2);
          path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
          draw[blue] (B)--(A)--(C);
          draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
          draw[red] (D)--(E);
          end{tikzpicture}
          end{document}


          enter image description here



          Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two Bs in ([reflect=B at D--E]B), and it does not work well with global transformations like scale=0.55. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)



          documentclass[tikz]{standalone}
          usetikzlibrary{calc}
          tikzset{reflect/.style args={#1 at #2--#3}{shift={%
          ($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
          }}}
          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (1,1);
          coordinate (C) at (1,2);
          coordinate (D) at (2,0);
          coordinate (E) at (2,3);

          draw[blue] (B)--(A)--(C);
          draw[red] (D)--(E);

          draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
          -- ([reflect=C at D--E]C);
          end{tikzpicture}
          end{document}


          enter image description here



          Side-remark: Paul Gaborit's solution seems to work.



          documentclass[tikz]{standalone}
          usetikzlibrary{spy,decorations.fractals}
          tikzset{
          mirror scope/.is family,
          mirror scope/angle/.store in=mirrorangle,
          mirror scope/center/.store in=mirrorcenter,
          mirror setup/.code={tikzset{mirror scope/.cd,#1}},
          mirror scope/.style={mirror setup={#1},spy scope={
          rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
          }
          newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}

          begin{document}
          begin{tikzpicture}
          coordinate (A) at (0,0);
          coordinate (B) at (1,1);
          coordinate (C) at (1,2);
          coordinate (D) at (2,0);
          coordinate (E) at (2,3);
          draw [help lines] (0,0) grid (4,3);
          begin{scope}[mirror scope={center={2,0},angle=90}]
          draw[blue] (B) -- (A) -- (C);
          draw[red] (D) -- (E);
          mirror;
          end{scope}
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer























          • @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
            – marmot
            Dec 25 '18 at 16:11












          • @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
            – marmot
            Dec 26 '18 at 3:18






          • 1




            @blackened Updated.
            – marmot
            Dec 28 '18 at 15:43










          • I am deleting my comments.
            – blackened
            Dec 28 '18 at 15:45










          • @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
            – marmot
            Dec 28 '18 at 15:48



















          4














          One possibility is using the tkz-euclide package.



          To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}



          documentclass[border=1cm,tikz]{standalone}
          usepackage{tkz-euclide}
          begin{document}
          begin{tikzpicture}
          draw[help lines,dashed](0,0)grid(4,4);
          coordinate (A) at (0,0);
          coordinate (B) at (1,1);
          coordinate (C) at (1,2);
          coordinate (D) at (2,0);
          coordinate[label=E] (E) at (2,3);

          tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
          tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
          tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}

          draw[blue] (B)--(A)--(C);
          draw[red] (D)--(E);

          draw [green] (B1)--(A1)--(C1);
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer































            4














            A PSTricks solution only for comparison purposes.



            documentclass[pstricks,border=12pt]{standalone}
            usepackage{pst-eucl}
            begin{document}
            pspicture[PointName=none,PointSymbol=none](8,3)
            pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
            pstOrtSym{X}{Y}{A,B,C}[A',B',C']
            psline[linecolor=blue](X)(Y)
            psline[linecolor=red](A)(B)(C)
            psline[linecolor=red](A')(B')(C')
            endpspicture
            end{document}


            enter image description here






            share|improve this answer





















              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "85"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f467295%2freflecting-a-line-and-or-point-with-named-coordinates%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3














              This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc.) The ordering indicates a ranking of these options.



              First option: (ab)use show path construction. (Problems: one has to cheat with the colors and also this is not one path but two of them.)



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
              -- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              A slight modification thereof does point reflections.



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{point reflect at/.style args={#1}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
              -- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
              (2,3) coordinate (D);
              draw[blue] (B)--(A)--(C);
              fill[red] (D) circle(1pt);
              draw[blue,point reflect at=D] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              Second option: Change the to path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect at/.style args={#1--#2}{to path={%
              ($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
              -- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
              }}}
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
              end{tikzpicture}
              end{document}


              enter image description here



              Third option: More core-level. (Problem: doesn't work with rescaling things.)



              documentclass[tikz]{standalone}
              makeatletter
              tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
              pgfutil@tempdima=pgf@x
              pgfutil@tempdimb=pgf@y
              pgfpointanchor{#1}{center}
              pgf@xa=pgf@x
              pgf@ya=pgf@y
              pgfpointanchor{#2}{center}
              pgf@xb=pgf@x
              pgf@yb=pgf@y
              pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
              advancepgf@xb by-pgf@xa
              advancepgf@yb by-pgf@ya
              pgfutil@tempdima=tmptpgf@yb
              pgfutil@tempdimb=-tmptpgf@xb
              },
              mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
              yshift=pgfutil@tempdimb}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=1]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
              draw[blue] (B)--(A)--(C);
              draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
              draw[red] (D)--(E);
              end{tikzpicture}
              end{document}


              enter image description here



              Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two Bs in ([reflect=B at D--E]B), and it does not work well with global transformations like scale=0.55. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect/.style args={#1 at #2--#3}{shift={%
              ($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
              }}}
              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);

              draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
              -- ([reflect=C at D--E]C);
              end{tikzpicture}
              end{document}


              enter image description here



              Side-remark: Paul Gaborit's solution seems to work.



              documentclass[tikz]{standalone}
              usetikzlibrary{spy,decorations.fractals}
              tikzset{
              mirror scope/.is family,
              mirror scope/angle/.store in=mirrorangle,
              mirror scope/center/.store in=mirrorcenter,
              mirror setup/.code={tikzset{mirror scope/.cd,#1}},
              mirror scope/.style={mirror setup={#1},spy scope={
              rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
              }
              newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}

              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw [help lines] (0,0) grid (4,3);
              begin{scope}[mirror scope={center={2,0},angle=90}]
              draw[blue] (B) -- (A) -- (C);
              draw[red] (D) -- (E);
              mirror;
              end{scope}
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer























              • @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
                – marmot
                Dec 25 '18 at 16:11












              • @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
                – marmot
                Dec 26 '18 at 3:18






              • 1




                @blackened Updated.
                – marmot
                Dec 28 '18 at 15:43










              • I am deleting my comments.
                – blackened
                Dec 28 '18 at 15:45










              • @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
                – marmot
                Dec 28 '18 at 15:48
















              3














              This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc.) The ordering indicates a ranking of these options.



              First option: (ab)use show path construction. (Problems: one has to cheat with the colors and also this is not one path but two of them.)



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
              -- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              A slight modification thereof does point reflections.



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{point reflect at/.style args={#1}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
              -- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
              (2,3) coordinate (D);
              draw[blue] (B)--(A)--(C);
              fill[red] (D) circle(1pt);
              draw[blue,point reflect at=D] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              Second option: Change the to path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect at/.style args={#1--#2}{to path={%
              ($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
              -- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
              }}}
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
              end{tikzpicture}
              end{document}


              enter image description here



              Third option: More core-level. (Problem: doesn't work with rescaling things.)



              documentclass[tikz]{standalone}
              makeatletter
              tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
              pgfutil@tempdima=pgf@x
              pgfutil@tempdimb=pgf@y
              pgfpointanchor{#1}{center}
              pgf@xa=pgf@x
              pgf@ya=pgf@y
              pgfpointanchor{#2}{center}
              pgf@xb=pgf@x
              pgf@yb=pgf@y
              pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
              advancepgf@xb by-pgf@xa
              advancepgf@yb by-pgf@ya
              pgfutil@tempdima=tmptpgf@yb
              pgfutil@tempdimb=-tmptpgf@xb
              },
              mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
              yshift=pgfutil@tempdimb}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=1]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
              draw[blue] (B)--(A)--(C);
              draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
              draw[red] (D)--(E);
              end{tikzpicture}
              end{document}


              enter image description here



              Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two Bs in ([reflect=B at D--E]B), and it does not work well with global transformations like scale=0.55. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect/.style args={#1 at #2--#3}{shift={%
              ($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
              }}}
              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);

              draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
              -- ([reflect=C at D--E]C);
              end{tikzpicture}
              end{document}


              enter image description here



              Side-remark: Paul Gaborit's solution seems to work.



              documentclass[tikz]{standalone}
              usetikzlibrary{spy,decorations.fractals}
              tikzset{
              mirror scope/.is family,
              mirror scope/angle/.store in=mirrorangle,
              mirror scope/center/.store in=mirrorcenter,
              mirror setup/.code={tikzset{mirror scope/.cd,#1}},
              mirror scope/.style={mirror setup={#1},spy scope={
              rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
              }
              newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}

              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw [help lines] (0,0) grid (4,3);
              begin{scope}[mirror scope={center={2,0},angle=90}]
              draw[blue] (B) -- (A) -- (C);
              draw[red] (D) -- (E);
              mirror;
              end{scope}
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer























              • @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
                – marmot
                Dec 25 '18 at 16:11












              • @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
                – marmot
                Dec 26 '18 at 3:18






              • 1




                @blackened Updated.
                – marmot
                Dec 28 '18 at 15:43










              • I am deleting my comments.
                – blackened
                Dec 28 '18 at 15:45










              • @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
                – marmot
                Dec 28 '18 at 15:48














              3












              3








              3






              This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc.) The ordering indicates a ranking of these options.



              First option: (ab)use show path construction. (Problems: one has to cheat with the colors and also this is not one path but two of them.)



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
              -- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              A slight modification thereof does point reflections.



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{point reflect at/.style args={#1}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
              -- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
              (2,3) coordinate (D);
              draw[blue] (B)--(A)--(C);
              fill[red] (D) circle(1pt);
              draw[blue,point reflect at=D] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              Second option: Change the to path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect at/.style args={#1--#2}{to path={%
              ($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
              -- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
              }}}
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
              end{tikzpicture}
              end{document}


              enter image description here



              Third option: More core-level. (Problem: doesn't work with rescaling things.)



              documentclass[tikz]{standalone}
              makeatletter
              tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
              pgfutil@tempdima=pgf@x
              pgfutil@tempdimb=pgf@y
              pgfpointanchor{#1}{center}
              pgf@xa=pgf@x
              pgf@ya=pgf@y
              pgfpointanchor{#2}{center}
              pgf@xb=pgf@x
              pgf@yb=pgf@y
              pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
              advancepgf@xb by-pgf@xa
              advancepgf@yb by-pgf@ya
              pgfutil@tempdima=tmptpgf@yb
              pgfutil@tempdimb=-tmptpgf@xb
              },
              mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
              yshift=pgfutil@tempdimb}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=1]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
              draw[blue] (B)--(A)--(C);
              draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
              draw[red] (D)--(E);
              end{tikzpicture}
              end{document}


              enter image description here



              Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two Bs in ([reflect=B at D--E]B), and it does not work well with global transformations like scale=0.55. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect/.style args={#1 at #2--#3}{shift={%
              ($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
              }}}
              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);

              draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
              -- ([reflect=C at D--E]C);
              end{tikzpicture}
              end{document}


              enter image description here



              Side-remark: Paul Gaborit's solution seems to work.



              documentclass[tikz]{standalone}
              usetikzlibrary{spy,decorations.fractals}
              tikzset{
              mirror scope/.is family,
              mirror scope/angle/.store in=mirrorangle,
              mirror scope/center/.store in=mirrorcenter,
              mirror setup/.code={tikzset{mirror scope/.cd,#1}},
              mirror scope/.style={mirror setup={#1},spy scope={
              rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
              }
              newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}

              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw [help lines] (0,0) grid (4,3);
              begin{scope}[mirror scope={center={2,0},angle=90}]
              draw[blue] (B) -- (A) -- (C);
              draw[red] (D) -- (E);
              mirror;
              end{scope}
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer














              This is a list of proposals. None of them is perfect. However, the aim is not to transform the points one by one, but the full line. (Transforming the points one by one is possible e.g. with the tkz-euclide or just with calc.) The ordering indicates a ranking of these options.



              First option: (ab)use show path construction. (Problems: one has to cheat with the colors and also this is not one path but two of them.)



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{reflect at/.style args={#1--#2}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($2*($(#1)!(tikzinputsegmentfirst)!(#2)$)-(tikzinputsegmentfirst)$)
              -- ($2*($(#1)!(tikzinputsegmentlast)!(#2)$)-(tikzinputsegmentlast)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              A slight modification thereof does point reflections.



              documentclass[tikz,border=3.14mm]{standalone}
              usetikzlibrary{decorations.pathreplacing,calc}
              makeatletter
              tikzset{point reflect at/.style args={#1}{decorate,decoration={
              show path construction,
              lineto code={draw[tikz@textcolor]
              ($(tikzinputsegmentfirst)+2*($(#1)-(tikzinputsegmentfirst)$)$)
              -- ($(tikzinputsegmentlast)+2*($(#1)-(tikzinputsegmentlast)$)$);}}}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=0.55]
              path (0,0) coordinate (A) (1,1) coordinate (B) (1,2) coordinate (C)
              (2,3) coordinate (D);
              draw[blue] (B)--(A)--(C);
              fill[red] (D) circle(1pt);
              draw[blue,point reflect at=D] (B)--(A)--(C);
              end{tikzpicture}
              end{document}


              enter image description here



              Second option: Change the to path. (Problems: not one continuous path but separate ones and you need to draw segment by segment.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect at/.style args={#1--#2}{to path={%
              ($2*($(#1)!(tikztostart)!(#2)$)-(tikztostart)$)
              -- ($2*($(#1)!(tikztotarget)!(#2)$)-(tikztotarget)$)
              }}}
              begin{document}
              begin{tikzpicture}[scale=0.55]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);
              draw[blue,reflect at=D--E] (B) to (A) (A) to (C);
              end{tikzpicture}
              end{document}


              enter image description here



              Third option: More core-level. (Problem: doesn't work with rescaling things.)



              documentclass[tikz]{standalone}
              makeatletter
              tikzset{get mirror data/.code args={#1--#2}{%pgftransformreset
              pgfutil@tempdima=pgf@x
              pgfutil@tempdimb=pgf@y
              pgfpointanchor{#1}{center}
              pgf@xa=pgf@x
              pgf@ya=pgf@y
              pgfpointanchor{#2}{center}
              pgf@xb=pgf@x
              pgf@yb=pgf@y
              pgfmathsetmacro{tmpt}{2*(-(pgf@ya*(pgf@xb-pgf@xa)) + pgfutil@tempdimb*(pgf@xb-pgf@xa) + (pgf@xa - pgfutil@tempdima)*(pgf@yb-pgf@ya))/((pgf@xb-pgf@xa)^2 + (pgf@yb-pgf@ya)^2)}
              advancepgf@xb by-pgf@xa
              advancepgf@yb by-pgf@ya
              pgfutil@tempdima=tmptpgf@yb
              pgfutil@tempdimb=-tmptpgf@xb
              },
              mirror at/.style args={#1--#2}{get mirror data=#1--#2,xshift=pgfutil@tempdima,
              yshift=pgfutil@tempdimb}}
              makeatother
              begin{document}
              begin{tikzpicture}[scale=1]
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              path (2,0) coordinate (D) ++ (rnd*120:2) coordinate (E);
              draw[blue] (B)--(A)--(C);
              draw[blue] ([mirror at=D--E]B)--([mirror at=D--E]A)--([mirror at=D--E]C);
              draw[red] (D)--(E);
              end{tikzpicture}
              end{document}


              enter image description here



              Fourth option: A style that computes the reflected coordinates. (Problems: Unfortunately, the syntax in this version requires to specify the coordinate twice, e.g. there are two Bs in ([reflect=B at D--E]B), and it does not work well with global transformations like scale=0.55. Other than that it uses this answer which shows how to compute the orthogonal projection of a point on a line.)



              documentclass[tikz]{standalone}
              usetikzlibrary{calc}
              tikzset{reflect/.style args={#1 at #2--#3}{shift={%
              ($2*($(#2)!(#1)!(#3)$)-2*(#1)$)
              }}}
              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);

              draw[orange] ([reflect=B at D--E]B) -- ([reflect=A at D--E]A)
              -- ([reflect=C at D--E]C);
              end{tikzpicture}
              end{document}


              enter image description here



              Side-remark: Paul Gaborit's solution seems to work.



              documentclass[tikz]{standalone}
              usetikzlibrary{spy,decorations.fractals}
              tikzset{
              mirror scope/.is family,
              mirror scope/angle/.store in=mirrorangle,
              mirror scope/center/.store in=mirrorcenter,
              mirror setup/.code={tikzset{mirror scope/.cd,#1}},
              mirror scope/.style={mirror setup={#1},spy scope={
              rectangle,lens={rotate=mirrorangle,yscale=-1,rotate=-1*mirrorangle},size=80cm}},
              }
              newcommandmirror[1]{spy[overlay,#1] on (mirrorcenter) in node at (mirrorcenter)}

              begin{document}
              begin{tikzpicture}
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate (E) at (2,3);
              draw [help lines] (0,0) grid (4,3);
              begin{scope}[mirror scope={center={2,0},angle=90}]
              draw[blue] (B) -- (A) -- (C);
              draw[red] (D) -- (E);
              mirror;
              end{scope}
              end{tikzpicture}
              end{document}


              enter image description here







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Dec 28 '18 at 16:20

























              answered Dec 25 '18 at 16:01









              marmot

              88.9k4102191




              88.9k4102191












              • @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
                – marmot
                Dec 25 '18 at 16:11












              • @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
                – marmot
                Dec 26 '18 at 3:18






              • 1




                @blackened Updated.
                – marmot
                Dec 28 '18 at 15:43










              • I am deleting my comments.
                – blackened
                Dec 28 '18 at 15:45










              • @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
                – marmot
                Dec 28 '18 at 15:48


















              • @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
                – marmot
                Dec 25 '18 at 16:11












              • @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
                – marmot
                Dec 26 '18 at 3:18






              • 1




                @blackened Updated.
                – marmot
                Dec 28 '18 at 15:43










              • I am deleting my comments.
                – blackened
                Dec 28 '18 at 15:45










              • @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
                – marmot
                Dec 28 '18 at 15:48
















              @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
              – marmot
              Dec 25 '18 at 16:11






              @blackened D is the mirror center, and since E is above D, the angle is 90 degrees. For general coordinates one could use calc to compute the angle (or write a new style).
              – marmot
              Dec 25 '18 at 16:11














              @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
              – marmot
              Dec 26 '18 at 3:18




              @blackened I guess the question is what you want to achieve. I think that the second one is rather short. (I do believe that one should be able to simplify it further. I was starting to look at tikzoption for that.)
              – marmot
              Dec 26 '18 at 3:18




              1




              1




              @blackened Updated.
              – marmot
              Dec 28 '18 at 15:43




              @blackened Updated.
              – marmot
              Dec 28 '18 at 15:43












              I am deleting my comments.
              – blackened
              Dec 28 '18 at 15:45




              I am deleting my comments.
              – blackened
              Dec 28 '18 at 15:45












              @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
              – marmot
              Dec 28 '18 at 15:48




              @blackened I also added the point reflection. Please let me know once you have it. It will be impossible to find here, so it is useless for others, and hence I want to delete it. Of course, you could ask another question.)
              – marmot
              Dec 28 '18 at 15:48











              4














              One possibility is using the tkz-euclide package.



              To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}



              documentclass[border=1cm,tikz]{standalone}
              usepackage{tkz-euclide}
              begin{document}
              begin{tikzpicture}
              draw[help lines,dashed](0,0)grid(4,4);
              coordinate (A) at (0,0);
              coordinate (B) at (1,1);
              coordinate (C) at (1,2);
              coordinate (D) at (2,0);
              coordinate[label=E] (E) at (2,3);

              tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
              tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
              tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}

              draw[blue] (B)--(A)--(C);
              draw[red] (D)--(E);

              draw [green] (B1)--(A1)--(C1);
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer




























                4














                One possibility is using the tkz-euclide package.



                To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}



                documentclass[border=1cm,tikz]{standalone}
                usepackage{tkz-euclide}
                begin{document}
                begin{tikzpicture}
                draw[help lines,dashed](0,0)grid(4,4);
                coordinate (A) at (0,0);
                coordinate (B) at (1,1);
                coordinate (C) at (1,2);
                coordinate (D) at (2,0);
                coordinate[label=E] (E) at (2,3);

                tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
                tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
                tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}

                draw[blue] (B)--(A)--(C);
                draw[red] (D)--(E);

                draw [green] (B1)--(A1)--(C1);
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer


























                  4












                  4








                  4






                  One possibility is using the tkz-euclide package.



                  To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}



                  documentclass[border=1cm,tikz]{standalone}
                  usepackage{tkz-euclide}
                  begin{document}
                  begin{tikzpicture}
                  draw[help lines,dashed](0,0)grid(4,4);
                  coordinate (A) at (0,0);
                  coordinate (B) at (1,1);
                  coordinate (C) at (1,2);
                  coordinate (D) at (2,0);
                  coordinate[label=E] (E) at (2,3);

                  tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
                  tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
                  tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}

                  draw[blue] (B)--(A)--(C);
                  draw[red] (D)--(E);

                  draw [green] (B1)--(A1)--(C1);
                  end{tikzpicture}
                  end{document}


                  enter image description here






                  share|improve this answer














                  One possibility is using the tkz-euclide package.



                  To define A1 the mirror image of the point A with respect to the line DE use: tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}



                  documentclass[border=1cm,tikz]{standalone}
                  usepackage{tkz-euclide}
                  begin{document}
                  begin{tikzpicture}
                  draw[help lines,dashed](0,0)grid(4,4);
                  coordinate (A) at (0,0);
                  coordinate (B) at (1,1);
                  coordinate (C) at (1,2);
                  coordinate (D) at (2,0);
                  coordinate[label=E] (E) at (2,3);

                  tkzDefPointBy[reflection=over D--E](A) tkzGetPoint{A1}
                  tkzDefPointBy[reflection=over D--E](B) tkzGetPoint{B1}
                  tkzDefPointBy[reflection=over D--E](C) tkzGetPoint{C1}

                  draw[blue] (B)--(A)--(C);
                  draw[red] (D)--(E);

                  draw [green] (B1)--(A1)--(C1);
                  end{tikzpicture}
                  end{document}


                  enter image description here







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Dec 25 '18 at 16:38

























                  answered Dec 25 '18 at 16:13









                  Hafid Boukhoulda

                  1,8821516




                  1,8821516























                      4














                      A PSTricks solution only for comparison purposes.



                      documentclass[pstricks,border=12pt]{standalone}
                      usepackage{pst-eucl}
                      begin{document}
                      pspicture[PointName=none,PointSymbol=none](8,3)
                      pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
                      pstOrtSym{X}{Y}{A,B,C}[A',B',C']
                      psline[linecolor=blue](X)(Y)
                      psline[linecolor=red](A)(B)(C)
                      psline[linecolor=red](A')(B')(C')
                      endpspicture
                      end{document}


                      enter image description here






                      share|improve this answer


























                        4














                        A PSTricks solution only for comparison purposes.



                        documentclass[pstricks,border=12pt]{standalone}
                        usepackage{pst-eucl}
                        begin{document}
                        pspicture[PointName=none,PointSymbol=none](8,3)
                        pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
                        pstOrtSym{X}{Y}{A,B,C}[A',B',C']
                        psline[linecolor=blue](X)(Y)
                        psline[linecolor=red](A)(B)(C)
                        psline[linecolor=red](A')(B')(C')
                        endpspicture
                        end{document}


                        enter image description here






                        share|improve this answer
























                          4












                          4








                          4






                          A PSTricks solution only for comparison purposes.



                          documentclass[pstricks,border=12pt]{standalone}
                          usepackage{pst-eucl}
                          begin{document}
                          pspicture[PointName=none,PointSymbol=none](8,3)
                          pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
                          pstOrtSym{X}{Y}{A,B,C}[A',B',C']
                          psline[linecolor=blue](X)(Y)
                          psline[linecolor=red](A)(B)(C)
                          psline[linecolor=red](A')(B')(C')
                          endpspicture
                          end{document}


                          enter image description here






                          share|improve this answer












                          A PSTricks solution only for comparison purposes.



                          documentclass[pstricks,border=12pt]{standalone}
                          usepackage{pst-eucl}
                          begin{document}
                          pspicture[PointName=none,PointSymbol=none](8,3)
                          pstGeonode(1,3){A}(0,0){B}(2,2){C}(4,3){X}(4,0){Y}
                          pstOrtSym{X}{Y}{A,B,C}[A',B',C']
                          psline[linecolor=blue](X)(Y)
                          psline[linecolor=red](A)(B)(C)
                          psline[linecolor=red](A')(B')(C')
                          endpspicture
                          end{document}


                          enter image description here







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Dec 25 '18 at 17:57









                          God Must Be Crazy

                          5,74211039




                          5,74211039






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f467295%2freflecting-a-line-and-or-point-with-named-coordinates%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to change which sound is reproduced for terminal bell?

                              Can I use Tabulator js library in my java Spring + Thymeleaf project?

                              Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents