Proving that $zeta(2)$ is irrational.
$begingroup$
We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.
Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}
we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
now it's easier to integrate $I_n$ by parts $n$ times.
Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$
I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.
number-theory irrational-numbers zeta-functions
$endgroup$
add a comment |
$begingroup$
We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.
Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}
we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
now it's easier to integrate $I_n$ by parts $n$ times.
Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$
I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.
number-theory irrational-numbers zeta-functions
$endgroup$
$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17
add a comment |
$begingroup$
We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.
Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}
we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
now it's easier to integrate $I_n$ by parts $n$ times.
Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$
I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.
number-theory irrational-numbers zeta-functions
$endgroup$
We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.
Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}
we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}
now it's easier to integrate $I_n$ by parts $n$ times.
Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$
I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.
number-theory irrational-numbers zeta-functions
number-theory irrational-numbers zeta-functions
edited Nov 25 '18 at 5:38
Shaun
8,888113681
8,888113681
asked Nov 25 '18 at 5:31
PintecoPinteco
731313
731313
$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17
add a comment |
$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17
$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17
$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012473%2fproving-that-zeta2-is-irrational%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012473%2fproving-that-zeta2-is-irrational%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17