Proving that $zeta(2)$ is irrational.












3












$begingroup$


We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}

$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.



Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}



we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}



now it's easier to integrate $I_n$ by parts $n$ times.




Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$




I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    $int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
    $endgroup$
    – reuns
    Nov 25 '18 at 6:17


















3












$begingroup$


We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}

$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.



Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}



we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}



now it's easier to integrate $I_n$ by parts $n$ times.




Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$




I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    $int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
    $endgroup$
    – reuns
    Nov 25 '18 at 6:17
















3












3








3


2



$begingroup$


We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}

$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.



Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}



we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}



now it's easier to integrate $I_n$ by parts $n$ times.




Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$




I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.










share|cite|improve this question











$endgroup$




We have the following integral:
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx = frac{a_nzeta(2)+b_n}{d_n^2}
end{align}

$P_n(x)$ is a polynomial with integer coefficients and degree $n$. $a_n,b_n$ are integers and $d_n$ is the less common multiple of all consecutive natural numbers up to $n$, so, $d_n^2=$ LCM$(1,2,...,n)^2$.



Since,
begin{align}
int_0^1 frac{1}{1-ay}dy=-frac{ln (1-a)}{a}
end{align}



we can use $a=1-x$ to have
begin{align}
I_n=int_0^1 P_n(x)frac{ln x}{1-x}dx &=
-int_0^1int_0^1 P_n(x)frac{1}{1-(1-x)y}dxdy\
&=frac{a_nzeta(2)+b_n}{d_n^2}
end{align}



now it's easier to integrate $I_n$ by parts $n$ times.




Is there a polynomial $P_n(x)$ with integer coefficients and degree
$n$ such that $I_n d_n^2 to 0$ as $n to infty:?$




I'm using this estimation: $d_n^2<e^{2An}$ for some real $A>1$.







number-theory irrational-numbers zeta-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 '18 at 5:38









Shaun

8,888113681




8,888113681










asked Nov 25 '18 at 5:31









PintecoPinteco

731313




731313












  • $begingroup$
    $int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
    $endgroup$
    – reuns
    Nov 25 '18 at 6:17




















  • $begingroup$
    $int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
    $endgroup$
    – reuns
    Nov 25 '18 at 6:17


















$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17






$begingroup$
$int_0^1 sum_{k=0}^n c_k x^k frac{ln(x)}{1-x}dx= -sum_{k=0}^n c_k(zeta(2)-sum_{l=1}^{k} l^{-2})$. Then what ?
$endgroup$
– reuns
Nov 25 '18 at 6:17












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012473%2fproving-that-zeta2-is-irrational%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012473%2fproving-that-zeta2-is-irrational%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents