creating duration into separate half an hour bands Pandas datetime
Need a small help. Working on the following. Separating rows.
enter image description here
Input:
Name, Channel, Duration, Start_Time
John, A, 2, 15:55:00
John, A, 3, 15:57:00
John, A, 5, 16:00:00
Joseph, B, 10, 15:25:00
Output
Name, Channel, TB, Count, Duration
John, A, 15:30:00-16:00:00,1,5
John, A, 16:00:00-16:30:00, 1, 5
Joseph, B, 15:00:00-15:30:00, 1, 5
Joseph, B, 15:30:00-16:00:00, 1, 5
Thank you in advance
python pandas datetime pandas-groupby timedelta
add a comment |
Need a small help. Working on the following. Separating rows.
enter image description here
Input:
Name, Channel, Duration, Start_Time
John, A, 2, 15:55:00
John, A, 3, 15:57:00
John, A, 5, 16:00:00
Joseph, B, 10, 15:25:00
Output
Name, Channel, TB, Count, Duration
John, A, 15:30:00-16:00:00,1,5
John, A, 16:00:00-16:30:00, 1, 5
Joseph, B, 15:00:00-15:30:00, 1, 5
Joseph, B, 15:30:00-16:00:00, 1, 5
Thank you in advance
python pandas datetime pandas-groupby timedelta
3
Can you please explain the logic? Also please don't add pictures of data. Give a reproducible example
– Sotos
Nov 19 '18 at 10:39
add a comment |
Need a small help. Working on the following. Separating rows.
enter image description here
Input:
Name, Channel, Duration, Start_Time
John, A, 2, 15:55:00
John, A, 3, 15:57:00
John, A, 5, 16:00:00
Joseph, B, 10, 15:25:00
Output
Name, Channel, TB, Count, Duration
John, A, 15:30:00-16:00:00,1,5
John, A, 16:00:00-16:30:00, 1, 5
Joseph, B, 15:00:00-15:30:00, 1, 5
Joseph, B, 15:30:00-16:00:00, 1, 5
Thank you in advance
python pandas datetime pandas-groupby timedelta
Need a small help. Working on the following. Separating rows.
enter image description here
Input:
Name, Channel, Duration, Start_Time
John, A, 2, 15:55:00
John, A, 3, 15:57:00
John, A, 5, 16:00:00
Joseph, B, 10, 15:25:00
Output
Name, Channel, TB, Count, Duration
John, A, 15:30:00-16:00:00,1,5
John, A, 16:00:00-16:30:00, 1, 5
Joseph, B, 15:00:00-15:30:00, 1, 5
Joseph, B, 15:30:00-16:00:00, 1, 5
Thank you in advance
python pandas datetime pandas-groupby timedelta
python pandas datetime pandas-groupby timedelta
edited Nov 19 '18 at 10:37
Sotos
28.9k51640
28.9k51640
asked Nov 19 '18 at 10:33
Srikanth AyithySrikanth Ayithy
83
83
3
Can you please explain the logic? Also please don't add pictures of data. Give a reproducible example
– Sotos
Nov 19 '18 at 10:39
add a comment |
3
Can you please explain the logic? Also please don't add pictures of data. Give a reproducible example
– Sotos
Nov 19 '18 at 10:39
3
3
Can you please explain the logic? Also please don't add pictures of data. Give a reproducible example
– Sotos
Nov 19 '18 at 10:39
Can you please explain the logic? Also please don't add pictures of data. Give a reproducible example
– Sotos
Nov 19 '18 at 10:39
add a comment |
1 Answer
1
active
oldest
votes
Use -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min'))
Output
Name Channel Duration Start_Time Start_time TB
0 John A 2 15:55:00 2018-11-19 15:55:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
1 John A 3 15:57:00 2018-11-19 15:57:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
2 John A 5 16:00:00 2018-11-19 16:00:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
3 Joseph B 10 15:25:00 2018-11-19 15:25:00 (2018-11-19 15:00:00, 2018-11-19 15:30:00]
If you want the exact format, do -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min')).apply(lambda x: ' - '.join(str(x).replace('(','').replace(']','').split(',')))
This will yield -
Name Channel Duration Start_Time TB
0 John A 2 15:55:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
1 John A 3 15:57:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
2 John A 5 16:00:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
3 Joseph B 10 15:25:00 2018-11-19 15:00:00 - 2018-11-19 15:30:00
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53372704%2fcreating-duration-into-separate-half-an-hour-bands-pandas-datetime%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min'))
Output
Name Channel Duration Start_Time Start_time TB
0 John A 2 15:55:00 2018-11-19 15:55:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
1 John A 3 15:57:00 2018-11-19 15:57:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
2 John A 5 16:00:00 2018-11-19 16:00:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
3 Joseph B 10 15:25:00 2018-11-19 15:25:00 (2018-11-19 15:00:00, 2018-11-19 15:30:00]
If you want the exact format, do -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min')).apply(lambda x: ' - '.join(str(x).replace('(','').replace(']','').split(',')))
This will yield -
Name Channel Duration Start_Time TB
0 John A 2 15:55:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
1 John A 3 15:57:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
2 John A 5 16:00:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
3 Joseph B 10 15:25:00 2018-11-19 15:00:00 - 2018-11-19 15:30:00
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
add a comment |
Use -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min'))
Output
Name Channel Duration Start_Time Start_time TB
0 John A 2 15:55:00 2018-11-19 15:55:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
1 John A 3 15:57:00 2018-11-19 15:57:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
2 John A 5 16:00:00 2018-11-19 16:00:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
3 Joseph B 10 15:25:00 2018-11-19 15:25:00 (2018-11-19 15:00:00, 2018-11-19 15:30:00]
If you want the exact format, do -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min')).apply(lambda x: ' - '.join(str(x).replace('(','').replace(']','').split(',')))
This will yield -
Name Channel Duration Start_Time TB
0 John A 2 15:55:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
1 John A 3 15:57:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
2 John A 5 16:00:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
3 Joseph B 10 15:25:00 2018-11-19 15:00:00 - 2018-11-19 15:30:00
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
add a comment |
Use -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min'))
Output
Name Channel Duration Start_Time Start_time TB
0 John A 2 15:55:00 2018-11-19 15:55:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
1 John A 3 15:57:00 2018-11-19 15:57:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
2 John A 5 16:00:00 2018-11-19 16:00:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
3 Joseph B 10 15:25:00 2018-11-19 15:25:00 (2018-11-19 15:00:00, 2018-11-19 15:30:00]
If you want the exact format, do -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min')).apply(lambda x: ' - '.join(str(x).replace('(','').replace(']','').split(',')))
This will yield -
Name Channel Duration Start_Time TB
0 John A 2 15:55:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
1 John A 3 15:57:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
2 John A 5 16:00:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
3 Joseph B 10 15:25:00 2018-11-19 15:00:00 - 2018-11-19 15:30:00
Use -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min'))
Output
Name Channel Duration Start_Time Start_time TB
0 John A 2 15:55:00 2018-11-19 15:55:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
1 John A 3 15:57:00 2018-11-19 15:57:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
2 John A 5 16:00:00 2018-11-19 16:00:00 (2018-11-19 15:30:00, 2018-11-19 16:00:00]
3 Joseph B 10 15:25:00 2018-11-19 15:25:00 (2018-11-19 15:00:00, 2018-11-19 15:30:00]
If you want the exact format, do -
df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='15:00:00', end='16:30:00', freq='30min')).apply(lambda x: ' - '.join(str(x).replace('(','').replace(']','').split(',')))
This will yield -
Name Channel Duration Start_Time TB
0 John A 2 15:55:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
1 John A 3 15:57:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
2 John A 5 16:00:00 2018-11-19 15:30:00 - 2018-11-19 16:00:00
3 Joseph B 10 15:25:00 2018-11-19 15:00:00 - 2018-11-19 15:30:00
answered Nov 19 '18 at 11:51
Vivek KalyanaranganVivek Kalyanarangan
4,9961827
4,9961827
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
add a comment |
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
df=df['Start_time'].astype('datetime64[D]').dtype df['TB'] = pd.cut(df['Start_time'], bins=pd.date_range(start='20:30:00', end='21:00:00', freq='30min')) Getting an Error - 'There are no fields in dtype datetime64[ns].' Issue is with the data types it appears to be. I tried converting into datetime formats. Still it is showing different datatype error everytime.
– Srikanth Ayithy
Nov 19 '18 at 15:24
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53372704%2fcreating-duration-into-separate-half-an-hour-bands-pandas-datetime%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
Can you please explain the logic? Also please don't add pictures of data. Give a reproducible example
– Sotos
Nov 19 '18 at 10:39