How can prove this inequality $|tau|^{2gamma} leq c_5(gamma) frac{1+|tau|}{1+|tau|^{1-2gamma}}$?












1












$begingroup$


I'm reading a demonstration that uses this following inequality. For a fixed $gamma<1/4$, exists a $c_5(gamma)$, such that



$|tau|^{2gamma} leq c_5(gamma) frac{1+|tau|}{1+|tau|^{1-2gamma}}, forall tau in mathbb{R}$.



I tried to deduce that using the fact that $0<frac{1}{1+|tau|}leq1$, but i couldn't get in anywhere.










share|cite|improve this question









$endgroup$












  • $begingroup$
    After you ask a question here, if you get an acceptable answer, you should "accept" the answer by clicking the check mark $checkmark$ next to it. This scores points for you and for the person who answered your question. You can find out more about accepting answers here: How do I accept an answer?, Why should we accept answers?, What should I do if someone answers my question?.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 22:02
















1












$begingroup$


I'm reading a demonstration that uses this following inequality. For a fixed $gamma<1/4$, exists a $c_5(gamma)$, such that



$|tau|^{2gamma} leq c_5(gamma) frac{1+|tau|}{1+|tau|^{1-2gamma}}, forall tau in mathbb{R}$.



I tried to deduce that using the fact that $0<frac{1}{1+|tau|}leq1$, but i couldn't get in anywhere.










share|cite|improve this question









$endgroup$












  • $begingroup$
    After you ask a question here, if you get an acceptable answer, you should "accept" the answer by clicking the check mark $checkmark$ next to it. This scores points for you and for the person who answered your question. You can find out more about accepting answers here: How do I accept an answer?, Why should we accept answers?, What should I do if someone answers my question?.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 22:02














1












1








1





$begingroup$


I'm reading a demonstration that uses this following inequality. For a fixed $gamma<1/4$, exists a $c_5(gamma)$, such that



$|tau|^{2gamma} leq c_5(gamma) frac{1+|tau|}{1+|tau|^{1-2gamma}}, forall tau in mathbb{R}$.



I tried to deduce that using the fact that $0<frac{1}{1+|tau|}leq1$, but i couldn't get in anywhere.










share|cite|improve this question









$endgroup$




I'm reading a demonstration that uses this following inequality. For a fixed $gamma<1/4$, exists a $c_5(gamma)$, such that



$|tau|^{2gamma} leq c_5(gamma) frac{1+|tau|}{1+|tau|^{1-2gamma}}, forall tau in mathbb{R}$.



I tried to deduce that using the fact that $0<frac{1}{1+|tau|}leq1$, but i couldn't get in anywhere.







real-analysis abstract-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 23 '18 at 19:53









João Paulo AndradeJoão Paulo Andrade

315




315












  • $begingroup$
    After you ask a question here, if you get an acceptable answer, you should "accept" the answer by clicking the check mark $checkmark$ next to it. This scores points for you and for the person who answered your question. You can find out more about accepting answers here: How do I accept an answer?, Why should we accept answers?, What should I do if someone answers my question?.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 22:02


















  • $begingroup$
    After you ask a question here, if you get an acceptable answer, you should "accept" the answer by clicking the check mark $checkmark$ next to it. This scores points for you and for the person who answered your question. You can find out more about accepting answers here: How do I accept an answer?, Why should we accept answers?, What should I do if someone answers my question?.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 22:02
















$begingroup$
After you ask a question here, if you get an acceptable answer, you should "accept" the answer by clicking the check mark $checkmark$ next to it. This scores points for you and for the person who answered your question. You can find out more about accepting answers here: How do I accept an answer?, Why should we accept answers?, What should I do if someone answers my question?.
$endgroup$
– Clement C.
Nov 24 '18 at 22:02




$begingroup$
After you ask a question here, if you get an acceptable answer, you should "accept" the answer by clicking the check mark $checkmark$ next to it. This scores points for you and for the person who answered your question. You can find out more about accepting answers here: How do I accept an answer?, Why should we accept answers?, What should I do if someone answers my question?.
$endgroup$
– Clement C.
Nov 24 '18 at 22:02










2 Answers
2






active

oldest

votes


















1












$begingroup$

Reorganizing, this is equivalent to proving that the function $fcolonmathbb{R}tomathbb{R}$ given by
$$
f(tau) = frac{|tau|+|tau|^{2gamma}} {|tau|+1}
$$

is bounded. Note that it is continuous, and $lim_{+infty} f = lim_{-infty} f = 1$ (using the fact that $2gamma <1$); therefore, it is bounded.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
    $endgroup$
    – Clement C.
    Nov 23 '18 at 19:59










  • $begingroup$
    Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
    $endgroup$
    – João Paulo Andrade
    Nov 23 '18 at 22:38










  • $begingroup$
    @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
    $endgroup$
    – Clement C.
    Nov 23 '18 at 22:40










  • $begingroup$
    For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
    $endgroup$
    – Clement C.
    Nov 23 '18 at 22:46



















1












$begingroup$

Let $|tau| = x geq 0$ and Consider:
$$f(x) = dfrac{x^{2gamma}+x}{1+x}$$
and prove this has a maximum by taking derivative.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010766%2fhow-can-prove-this-inequality-tau2-gamma-leq-c-5-gamma-frac1-tau%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Reorganizing, this is equivalent to proving that the function $fcolonmathbb{R}tomathbb{R}$ given by
    $$
    f(tau) = frac{|tau|+|tau|^{2gamma}} {|tau|+1}
    $$

    is bounded. Note that it is continuous, and $lim_{+infty} f = lim_{-infty} f = 1$ (using the fact that $2gamma <1$); therefore, it is bounded.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
      $endgroup$
      – Clement C.
      Nov 23 '18 at 19:59










    • $begingroup$
      Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
      $endgroup$
      – João Paulo Andrade
      Nov 23 '18 at 22:38










    • $begingroup$
      @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:40










    • $begingroup$
      For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:46
















    1












    $begingroup$

    Reorganizing, this is equivalent to proving that the function $fcolonmathbb{R}tomathbb{R}$ given by
    $$
    f(tau) = frac{|tau|+|tau|^{2gamma}} {|tau|+1}
    $$

    is bounded. Note that it is continuous, and $lim_{+infty} f = lim_{-infty} f = 1$ (using the fact that $2gamma <1$); therefore, it is bounded.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
      $endgroup$
      – Clement C.
      Nov 23 '18 at 19:59










    • $begingroup$
      Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
      $endgroup$
      – João Paulo Andrade
      Nov 23 '18 at 22:38










    • $begingroup$
      @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:40










    • $begingroup$
      For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:46














    1












    1








    1





    $begingroup$

    Reorganizing, this is equivalent to proving that the function $fcolonmathbb{R}tomathbb{R}$ given by
    $$
    f(tau) = frac{|tau|+|tau|^{2gamma}} {|tau|+1}
    $$

    is bounded. Note that it is continuous, and $lim_{+infty} f = lim_{-infty} f = 1$ (using the fact that $2gamma <1$); therefore, it is bounded.






    share|cite|improve this answer









    $endgroup$



    Reorganizing, this is equivalent to proving that the function $fcolonmathbb{R}tomathbb{R}$ given by
    $$
    f(tau) = frac{|tau|+|tau|^{2gamma}} {|tau|+1}
    $$

    is bounded. Note that it is continuous, and $lim_{+infty} f = lim_{-infty} f = 1$ (using the fact that $2gamma <1$); therefore, it is bounded.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 23 '18 at 19:57









    Clement C.Clement C.

    49.8k33886




    49.8k33886












    • $begingroup$
      (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
      $endgroup$
      – Clement C.
      Nov 23 '18 at 19:59










    • $begingroup$
      Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
      $endgroup$
      – João Paulo Andrade
      Nov 23 '18 at 22:38










    • $begingroup$
      @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:40










    • $begingroup$
      For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:46


















    • $begingroup$
      (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
      $endgroup$
      – Clement C.
      Nov 23 '18 at 19:59










    • $begingroup$
      Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
      $endgroup$
      – João Paulo Andrade
      Nov 23 '18 at 22:38










    • $begingroup$
      @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:40










    • $begingroup$
      For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
      $endgroup$
      – Clement C.
      Nov 23 '18 at 22:46
















    $begingroup$
    (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
    $endgroup$
    – Clement C.
    Nov 23 '18 at 19:59




    $begingroup$
    (also, as shown in this proof, the result holds for $gamma < 1/2$, not only $gamma<1/4$.)
    $endgroup$
    – Clement C.
    Nov 23 '18 at 19:59












    $begingroup$
    Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
    $endgroup$
    – João Paulo Andrade
    Nov 23 '18 at 22:38




    $begingroup$
    Actually it will not hold for $gamma < 1/2$, the reason why it holds is because $2gamma<1-2gamma$ when $gamma < 1/4$. I figured this, but it wasn't suffice to prove that. But thank you so much for help me.
    $endgroup$
    – João Paulo Andrade
    Nov 23 '18 at 22:38












    $begingroup$
    @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
    $endgroup$
    – Clement C.
    Nov 23 '18 at 22:40




    $begingroup$
    @JoãoPauloAndrade Glad it helped, but -- it does hold for all $gamma leq 1/2$ (the case $1/2$ is proven similarly, but the limit of $f$ at $infty$ is $2$, not 1).
    $endgroup$
    – Clement C.
    Nov 23 '18 at 22:40












    $begingroup$
    For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
    $endgroup$
    – Clement C.
    Nov 23 '18 at 22:46




    $begingroup$
    For instance, for $gamma=1/2$, take $c_5(1/2)=2$. You have $$|tau| leq 2cdot frac{1+|tau|}{2}$$ for all $tau$.
    $endgroup$
    – Clement C.
    Nov 23 '18 at 22:46











    1












    $begingroup$

    Let $|tau| = x geq 0$ and Consider:
    $$f(x) = dfrac{x^{2gamma}+x}{1+x}$$
    and prove this has a maximum by taking derivative.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Let $|tau| = x geq 0$ and Consider:
      $$f(x) = dfrac{x^{2gamma}+x}{1+x}$$
      and prove this has a maximum by taking derivative.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Let $|tau| = x geq 0$ and Consider:
        $$f(x) = dfrac{x^{2gamma}+x}{1+x}$$
        and prove this has a maximum by taking derivative.






        share|cite|improve this answer









        $endgroup$



        Let $|tau| = x geq 0$ and Consider:
        $$f(x) = dfrac{x^{2gamma}+x}{1+x}$$
        and prove this has a maximum by taking derivative.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 23 '18 at 19:58









        dezdichadodezdichado

        6,3001929




        6,3001929






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010766%2fhow-can-prove-this-inequality-tau2-gamma-leq-c-5-gamma-frac1-tau%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?