For $0 < x < 1$, express $sin[sin^{-1}(x) + cos^{-1}(x)]$, in terms of $x$
$begingroup$
I need to express $sin[sin^{-1}(x) + cos^{-1}(x)]$, in terms of $x$, if $0 < x < 1$.
I'm not sure how to solve this. If I knew the value of $x$, I would try and apply the identity, $sin(A-B)=sin(A)cos(B)+ cos(A)sin(A)$, but since the answer is the real number $1$, I don't see how that would work.
For example:
$$sin[sin^{-1}(x) + cos^{-1}(x)]$$
$$sin[sin^{-1}(x)] cdot cos[cos^{-1}(x)] + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x cdot x + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x^2 + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
That's where I'm stuck.
algebra-precalculus trigonometry
$endgroup$
add a comment |
$begingroup$
I need to express $sin[sin^{-1}(x) + cos^{-1}(x)]$, in terms of $x$, if $0 < x < 1$.
I'm not sure how to solve this. If I knew the value of $x$, I would try and apply the identity, $sin(A-B)=sin(A)cos(B)+ cos(A)sin(A)$, but since the answer is the real number $1$, I don't see how that would work.
For example:
$$sin[sin^{-1}(x) + cos^{-1}(x)]$$
$$sin[sin^{-1}(x)] cdot cos[cos^{-1}(x)] + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x cdot x + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x^2 + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
That's where I'm stuck.
algebra-precalculus trigonometry
$endgroup$
2
$begingroup$
socratic.org/questions/how-do-you-prove-arcsin-x-arccos-x-pi-2
$endgroup$
– lab bhattacharjee
Nov 23 '18 at 19:12
3
$begingroup$
Hint: $arcsin x+ arccos x=frac{pi}{2}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:12
add a comment |
$begingroup$
I need to express $sin[sin^{-1}(x) + cos^{-1}(x)]$, in terms of $x$, if $0 < x < 1$.
I'm not sure how to solve this. If I knew the value of $x$, I would try and apply the identity, $sin(A-B)=sin(A)cos(B)+ cos(A)sin(A)$, but since the answer is the real number $1$, I don't see how that would work.
For example:
$$sin[sin^{-1}(x) + cos^{-1}(x)]$$
$$sin[sin^{-1}(x)] cdot cos[cos^{-1}(x)] + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x cdot x + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x^2 + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
That's where I'm stuck.
algebra-precalculus trigonometry
$endgroup$
I need to express $sin[sin^{-1}(x) + cos^{-1}(x)]$, in terms of $x$, if $0 < x < 1$.
I'm not sure how to solve this. If I knew the value of $x$, I would try and apply the identity, $sin(A-B)=sin(A)cos(B)+ cos(A)sin(A)$, but since the answer is the real number $1$, I don't see how that would work.
For example:
$$sin[sin^{-1}(x) + cos^{-1}(x)]$$
$$sin[sin^{-1}(x)] cdot cos[cos^{-1}(x)] + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x cdot x + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
$$x^2 + cos[sin^{-1}(x)] cdot sin[cos^{-1}(x)]$$
That's where I'm stuck.
algebra-precalculus trigonometry
algebra-precalculus trigonometry
edited Nov 23 '18 at 19:35
Robert Howard
1,9161822
1,9161822
asked Nov 23 '18 at 19:09
LuminousNutriaLuminousNutria
1709
1709
2
$begingroup$
socratic.org/questions/how-do-you-prove-arcsin-x-arccos-x-pi-2
$endgroup$
– lab bhattacharjee
Nov 23 '18 at 19:12
3
$begingroup$
Hint: $arcsin x+ arccos x=frac{pi}{2}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:12
add a comment |
2
$begingroup$
socratic.org/questions/how-do-you-prove-arcsin-x-arccos-x-pi-2
$endgroup$
– lab bhattacharjee
Nov 23 '18 at 19:12
3
$begingroup$
Hint: $arcsin x+ arccos x=frac{pi}{2}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:12
2
2
$begingroup$
socratic.org/questions/how-do-you-prove-arcsin-x-arccos-x-pi-2
$endgroup$
– lab bhattacharjee
Nov 23 '18 at 19:12
$begingroup$
socratic.org/questions/how-do-you-prove-arcsin-x-arccos-x-pi-2
$endgroup$
– lab bhattacharjee
Nov 23 '18 at 19:12
3
3
$begingroup$
Hint: $arcsin x+ arccos x=frac{pi}{2}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:12
$begingroup$
Hint: $arcsin x+ arccos x=frac{pi}{2}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:12
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Using the fact $$cos(u)=sqrt{1-sin^2 u}\sin(u)=sqrt{1-cos^2 u}$$we have $$cos [sin^{-1}x]cdot sin [cos^{-1}x]=sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)}=1-x^2$$therefore $$large sin[sin^{-1}x+cos^{-1}x]=1$$
$endgroup$
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
|
show 3 more comments
$begingroup$
Write $cos(sin^{-1} x)$ as $sin(fracpi2 - sin^{-1}x)$ and expand using the identity.
Similarly, solve the other term by writing $sin(cos^{-1} x)$ as $cos(fracpi2 - cos^{-1} x)$ and expanding it using an identity.
$endgroup$
add a comment |
$begingroup$
Hint: Use
$$arcsin x = y_1 implies sin y_1 = x$$
$$arccos x = y_2 implies cos y_2 = x$$
and
$$cos theta = sin bigg(frac{pi}{2}-thetabigg)$$
to get
$$implies y_2 = frac{pi}{2}-y_1$$
So what does $y_1+y_2$ become?
$endgroup$
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010720%2ffor-0-x-1-express-sin-sin-1x-cos-1x-in-terms-of-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the fact $$cos(u)=sqrt{1-sin^2 u}\sin(u)=sqrt{1-cos^2 u}$$we have $$cos [sin^{-1}x]cdot sin [cos^{-1}x]=sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)}=1-x^2$$therefore $$large sin[sin^{-1}x+cos^{-1}x]=1$$
$endgroup$
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
|
show 3 more comments
$begingroup$
Using the fact $$cos(u)=sqrt{1-sin^2 u}\sin(u)=sqrt{1-cos^2 u}$$we have $$cos [sin^{-1}x]cdot sin [cos^{-1}x]=sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)}=1-x^2$$therefore $$large sin[sin^{-1}x+cos^{-1}x]=1$$
$endgroup$
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
|
show 3 more comments
$begingroup$
Using the fact $$cos(u)=sqrt{1-sin^2 u}\sin(u)=sqrt{1-cos^2 u}$$we have $$cos [sin^{-1}x]cdot sin [cos^{-1}x]=sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)}=1-x^2$$therefore $$large sin[sin^{-1}x+cos^{-1}x]=1$$
$endgroup$
Using the fact $$cos(u)=sqrt{1-sin^2 u}\sin(u)=sqrt{1-cos^2 u}$$we have $$cos [sin^{-1}x]cdot sin [cos^{-1}x]=sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)}=1-x^2$$therefore $$large sin[sin^{-1}x+cos^{-1}x]=1$$
edited Nov 23 '18 at 19:35
answered Nov 23 '18 at 19:13
Mostafa AyazMostafa Ayaz
14.7k3937
14.7k3937
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
|
show 3 more comments
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
I'm sorry, I don't understand how that helps.
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:28
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
Then you can substitute $u=sin^{-1}x$ and $u=cos^{-1}x$ in the first and second equations respectively
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:29
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
So, instead of $sin[sin^{-1}(x) + cos^{-1}(x)]$, I'll have $sin[u + u]$?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:32
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
I clarified my answer a bit more. Hope it help now!
$endgroup$
– Mostafa Ayaz
Nov 23 '18 at 19:36
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
$begingroup$
So, why does $sqrt{1-sin^2 (sin^{-1}x)}cdot sqrt{1-cos^2 (cos^{-1}x)} = 1 - x^2$ ?
$endgroup$
– LuminousNutria
Nov 23 '18 at 19:41
|
show 3 more comments
$begingroup$
Write $cos(sin^{-1} x)$ as $sin(fracpi2 - sin^{-1}x)$ and expand using the identity.
Similarly, solve the other term by writing $sin(cos^{-1} x)$ as $cos(fracpi2 - cos^{-1} x)$ and expanding it using an identity.
$endgroup$
add a comment |
$begingroup$
Write $cos(sin^{-1} x)$ as $sin(fracpi2 - sin^{-1}x)$ and expand using the identity.
Similarly, solve the other term by writing $sin(cos^{-1} x)$ as $cos(fracpi2 - cos^{-1} x)$ and expanding it using an identity.
$endgroup$
add a comment |
$begingroup$
Write $cos(sin^{-1} x)$ as $sin(fracpi2 - sin^{-1}x)$ and expand using the identity.
Similarly, solve the other term by writing $sin(cos^{-1} x)$ as $cos(fracpi2 - cos^{-1} x)$ and expanding it using an identity.
$endgroup$
Write $cos(sin^{-1} x)$ as $sin(fracpi2 - sin^{-1}x)$ and expand using the identity.
Similarly, solve the other term by writing $sin(cos^{-1} x)$ as $cos(fracpi2 - cos^{-1} x)$ and expanding it using an identity.
edited Nov 23 '18 at 19:57
Timothy Cho
789519
789519
answered Nov 23 '18 at 19:19
AlexAlex
111
111
add a comment |
add a comment |
$begingroup$
Hint: Use
$$arcsin x = y_1 implies sin y_1 = x$$
$$arccos x = y_2 implies cos y_2 = x$$
and
$$cos theta = sin bigg(frac{pi}{2}-thetabigg)$$
to get
$$implies y_2 = frac{pi}{2}-y_1$$
So what does $y_1+y_2$ become?
$endgroup$
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
|
show 2 more comments
$begingroup$
Hint: Use
$$arcsin x = y_1 implies sin y_1 = x$$
$$arccos x = y_2 implies cos y_2 = x$$
and
$$cos theta = sin bigg(frac{pi}{2}-thetabigg)$$
to get
$$implies y_2 = frac{pi}{2}-y_1$$
So what does $y_1+y_2$ become?
$endgroup$
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
|
show 2 more comments
$begingroup$
Hint: Use
$$arcsin x = y_1 implies sin y_1 = x$$
$$arccos x = y_2 implies cos y_2 = x$$
and
$$cos theta = sin bigg(frac{pi}{2}-thetabigg)$$
to get
$$implies y_2 = frac{pi}{2}-y_1$$
So what does $y_1+y_2$ become?
$endgroup$
Hint: Use
$$arcsin x = y_1 implies sin y_1 = x$$
$$arccos x = y_2 implies cos y_2 = x$$
and
$$cos theta = sin bigg(frac{pi}{2}-thetabigg)$$
to get
$$implies y_2 = frac{pi}{2}-y_1$$
So what does $y_1+y_2$ become?
edited Nov 23 '18 at 19:24
answered Nov 23 '18 at 19:20
KM101KM101
5,8711423
5,8711423
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
|
show 2 more comments
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
You've got to be careful here $sin y_1=cos y_2$ doesn't necessarily imply that $y_2=frac{pi}{2}-y_1$. For example, $sin (frac{pi}{2})=cos (2pi)$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:24
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
But $2pi = 0 $ (in radians), so you get $sin frac{pi}{2} = cos 0$.
$endgroup$
– KM101
Nov 23 '18 at 19:27
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
what do you mean by $2pi=0$? !!!
$endgroup$
– Anurag A
Nov 23 '18 at 19:30
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
(Awful wording, I edited the comment.) I meant $0$ radians and $2pi$ radians are the same.
$endgroup$
– KM101
Nov 23 '18 at 19:32
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
$begingroup$
No they are not. $0$ radian is $0^{circ}$ and $2pi$ radian is $360^{circ}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:34
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010720%2ffor-0-x-1-express-sin-sin-1x-cos-1x-in-terms-of-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
socratic.org/questions/how-do-you-prove-arcsin-x-arccos-x-pi-2
$endgroup$
– lab bhattacharjee
Nov 23 '18 at 19:12
3
$begingroup$
Hint: $arcsin x+ arccos x=frac{pi}{2}$.
$endgroup$
– Anurag A
Nov 23 '18 at 19:12