Find all real numbers $x,y,zin [0,1]^3$ such that $(x^2+y^2)sqrt{1-z^2}ge z$…
$begingroup$
Such that:
$$(x^2+y^2)sqrt{1-z^2}ge z$$
and
$$(z^2+y^2)sqrt{1-x^2}ge x$$
and
$$(x^2+z^2)sqrt{1-y^2}ge y$$
Since $x,y,z$ $in ]0,1[^3$
then , there are some real numbers $a,b,c$ such that
$cos a=x, cos b=y , cos c=z$
After some manipulations , we find that :
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
.... same for other inequalities
I don't know what i must do now
Source : Test N°1 for IMO 2020 in Morocoo
inequality contest-math
$endgroup$
add a comment |
$begingroup$
Such that:
$$(x^2+y^2)sqrt{1-z^2}ge z$$
and
$$(z^2+y^2)sqrt{1-x^2}ge x$$
and
$$(x^2+z^2)sqrt{1-y^2}ge y$$
Since $x,y,z$ $in ]0,1[^3$
then , there are some real numbers $a,b,c$ such that
$cos a=x, cos b=y , cos c=z$
After some manipulations , we find that :
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
.... same for other inequalities
I don't know what i must do now
Source : Test N°1 for IMO 2020 in Morocoo
inequality contest-math
$endgroup$
add a comment |
$begingroup$
Such that:
$$(x^2+y^2)sqrt{1-z^2}ge z$$
and
$$(z^2+y^2)sqrt{1-x^2}ge x$$
and
$$(x^2+z^2)sqrt{1-y^2}ge y$$
Since $x,y,z$ $in ]0,1[^3$
then , there are some real numbers $a,b,c$ such that
$cos a=x, cos b=y , cos c=z$
After some manipulations , we find that :
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
.... same for other inequalities
I don't know what i must do now
Source : Test N°1 for IMO 2020 in Morocoo
inequality contest-math
$endgroup$
Such that:
$$(x^2+y^2)sqrt{1-z^2}ge z$$
and
$$(z^2+y^2)sqrt{1-x^2}ge x$$
and
$$(x^2+z^2)sqrt{1-y^2}ge y$$
Since $x,y,z$ $in ]0,1[^3$
then , there are some real numbers $a,b,c$ such that
$cos a=x, cos b=y , cos c=z$
After some manipulations , we find that :
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
.... same for other inequalities
I don't know what i must do now
Source : Test N°1 for IMO 2020 in Morocoo
inequality contest-math
inequality contest-math
edited Nov 23 '18 at 20:54
Michael Rozenberg
97.6k1589188
97.6k1589188
asked Nov 23 '18 at 19:20
user600785user600785
6810
6810
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The inequality is symetric.
so we can suppose that $xge y ge z$
the second inequality becomes
$$2x^2sqrt{1-x^2}ge x$$
$$2xsqrt{1-x^2}ge 1$$
$$4x^2-4x^4-1ge 0$$
$$-(2x^2-1)^2ge 0$$
$$2x^2-1=0$$
$$x=frac{1}{sqrt{2}}$$
By the same way , after remplacing $x$ by its value
we will find that $x=y=z=frac{1}{sqrt{2}}$
$endgroup$
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
add a comment |
$begingroup$
You were very close, but you made a mistake. You should have
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
instead. Here is a similar approach.
First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
$$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
Adding all of these and then dividing the result by $2$ yield
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
From (1) and (2), we must have
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.
Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
$$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
If $yzneq 0$, then dividing by $yz$, we have
$$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
$$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$
$endgroup$
add a comment |
$begingroup$
The hint:
$$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
$$(x^2+y^2)^2(1-z^2)geq z^2$$ or
$$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
$$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
$$x=y=z$$ and all inequalities the are equalities.
$endgroup$
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010735%2ffind-all-real-numbers-x-y-z-in-0-13-such-that-x2y2-sqrt1-z2-ge-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The inequality is symetric.
so we can suppose that $xge y ge z$
the second inequality becomes
$$2x^2sqrt{1-x^2}ge x$$
$$2xsqrt{1-x^2}ge 1$$
$$4x^2-4x^4-1ge 0$$
$$-(2x^2-1)^2ge 0$$
$$2x^2-1=0$$
$$x=frac{1}{sqrt{2}}$$
By the same way , after remplacing $x$ by its value
we will find that $x=y=z=frac{1}{sqrt{2}}$
$endgroup$
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
add a comment |
$begingroup$
The inequality is symetric.
so we can suppose that $xge y ge z$
the second inequality becomes
$$2x^2sqrt{1-x^2}ge x$$
$$2xsqrt{1-x^2}ge 1$$
$$4x^2-4x^4-1ge 0$$
$$-(2x^2-1)^2ge 0$$
$$2x^2-1=0$$
$$x=frac{1}{sqrt{2}}$$
By the same way , after remplacing $x$ by its value
we will find that $x=y=z=frac{1}{sqrt{2}}$
$endgroup$
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
add a comment |
$begingroup$
The inequality is symetric.
so we can suppose that $xge y ge z$
the second inequality becomes
$$2x^2sqrt{1-x^2}ge x$$
$$2xsqrt{1-x^2}ge 1$$
$$4x^2-4x^4-1ge 0$$
$$-(2x^2-1)^2ge 0$$
$$2x^2-1=0$$
$$x=frac{1}{sqrt{2}}$$
By the same way , after remplacing $x$ by its value
we will find that $x=y=z=frac{1}{sqrt{2}}$
$endgroup$
The inequality is symetric.
so we can suppose that $xge y ge z$
the second inequality becomes
$$2x^2sqrt{1-x^2}ge x$$
$$2xsqrt{1-x^2}ge 1$$
$$4x^2-4x^4-1ge 0$$
$$-(2x^2-1)^2ge 0$$
$$2x^2-1=0$$
$$x=frac{1}{sqrt{2}}$$
By the same way , after remplacing $x$ by its value
we will find that $x=y=z=frac{1}{sqrt{2}}$
edited Nov 23 '18 at 21:14
answered Nov 23 '18 at 21:09
user600785user600785
6810
6810
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
add a comment |
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 21:27
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
$endgroup$
– user600785
Nov 23 '18 at 21:56
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
$begingroup$
But by the given it gives a solution. You can't change the given.It's not fair.
$endgroup$
– Michael Rozenberg
Nov 23 '18 at 22:07
add a comment |
$begingroup$
You were very close, but you made a mistake. You should have
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
instead. Here is a similar approach.
First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
$$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
Adding all of these and then dividing the result by $2$ yield
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
From (1) and (2), we must have
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.
Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
$$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
If $yzneq 0$, then dividing by $yz$, we have
$$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
$$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$
$endgroup$
add a comment |
$begingroup$
You were very close, but you made a mistake. You should have
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
instead. Here is a similar approach.
First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
$$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
Adding all of these and then dividing the result by $2$ yield
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
From (1) and (2), we must have
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.
Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
$$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
If $yzneq 0$, then dividing by $yz$, we have
$$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
$$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$
$endgroup$
add a comment |
$begingroup$
You were very close, but you made a mistake. You should have
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
instead. Here is a similar approach.
First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
$$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
Adding all of these and then dividing the result by $2$ yield
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
From (1) and (2), we must have
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.
Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
$$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
If $yzneq 0$, then dividing by $yz$, we have
$$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
$$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$
$endgroup$
You were very close, but you made a mistake. You should have
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
instead. Here is a similar approach.
First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
$$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
Adding all of these and then dividing the result by $2$ yield
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
From (1) and (2), we must have
$$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.
Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
$$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
If $yzneq 0$, then dividing by $yz$, we have
$$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
$$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$
answered Nov 23 '18 at 20:47
user593746
add a comment |
add a comment |
$begingroup$
The hint:
$$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
$$(x^2+y^2)^2(1-z^2)geq z^2$$ or
$$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
$$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
$$x=y=z$$ and all inequalities the are equalities.
$endgroup$
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
add a comment |
$begingroup$
The hint:
$$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
$$(x^2+y^2)^2(1-z^2)geq z^2$$ or
$$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
$$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
$$x=y=z$$ and all inequalities the are equalities.
$endgroup$
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
add a comment |
$begingroup$
The hint:
$$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
$$(x^2+y^2)^2(1-z^2)geq z^2$$ or
$$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
$$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
$$x=y=z$$ and all inequalities the are equalities.
$endgroup$
The hint:
$$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
$$(x^2+y^2)^2(1-z^2)geq z^2$$ or
$$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
$$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
$$x=y=z$$ and all inequalities the are equalities.
edited Nov 24 '18 at 12:22
answered Nov 23 '18 at 20:47
Michael RozenbergMichael Rozenberg
97.6k1589188
97.6k1589188
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
add a comment |
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
$endgroup$
– user600785
Nov 24 '18 at 10:16
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
$begingroup$
@user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
$endgroup$
– Michael Rozenberg
Nov 24 '18 at 12:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010735%2ffind-all-real-numbers-x-y-z-in-0-13-such-that-x2y2-sqrt1-z2-ge-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown