harmonic series - generating function
up vote
3
down vote
favorite
I am currently learning about generating functions and
I found an interesting one for harmonic series, $dfrac{log(1-x)}{x-1}$.
Is there any hope I could get a formula for $n$th coefficient out of this? The $n$th derivative looks messy...
In absence of formula, can I at least get some asymptotic information, like that harmonic series diverges? (Can be shown more simply, I know.)
generating-functions
add a comment |
up vote
3
down vote
favorite
I am currently learning about generating functions and
I found an interesting one for harmonic series, $dfrac{log(1-x)}{x-1}$.
Is there any hope I could get a formula for $n$th coefficient out of this? The $n$th derivative looks messy...
In absence of formula, can I at least get some asymptotic information, like that harmonic series diverges? (Can be shown more simply, I know.)
generating-functions
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I am currently learning about generating functions and
I found an interesting one for harmonic series, $dfrac{log(1-x)}{x-1}$.
Is there any hope I could get a formula for $n$th coefficient out of this? The $n$th derivative looks messy...
In absence of formula, can I at least get some asymptotic information, like that harmonic series diverges? (Can be shown more simply, I know.)
generating-functions
I am currently learning about generating functions and
I found an interesting one for harmonic series, $dfrac{log(1-x)}{x-1}$.
Is there any hope I could get a formula for $n$th coefficient out of this? The $n$th derivative looks messy...
In absence of formula, can I at least get some asymptotic information, like that harmonic series diverges? (Can be shown more simply, I know.)
generating-functions
generating-functions
edited Oct 28 '16 at 17:08
Michael Hardy
1
1
asked Oct 28 '16 at 16:06
Adam
1,45411537
1,45411537
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With the identity
$ds{pars{1 - x}^{m} = sum_{k = 0}^{infty}
{m choose k}pars{-x}^{k} =
sum_{k = 0}^{infty}{k - m - 1 choose k}x^{k}}$:
begin{equation}
begin{array}{l}
mbox{Derivative respect of} ds{m}:
\
ds{pars{1 - x}^{m}lnpars{1 - x} =
sum_{k = 0}^{infty}bracks{partiald{}{m}{k - m - 1 choose k}}x^{k}}
\[5mm]
mbox{The limit}ds{ m to - 1}:
\
ds{-,{lnpars{1 - x} over 1 - x} =
sum_{k = 0}^{infty}color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}
_{ m = - 1}} x^{k}}
end{array}
label{1}tag{1}
end{equation}
begin{align}
&color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}_{ m = - 1}} =
left.vphantom{Huge A}-,partiald{}{m}bracks{Gammapars{k - m} over k!,Gammapars{-m}}rightvert_{ m = - 1}
\[5mm] = &
-,{1 over k!},
{-Gamma, 'pars{k + 1}Gammapars{1} + Gamma, 'pars{1}Gammapars{k + 1}over Gamma^{2}pars{1}}
\[5mm] = &
-,{1 over k!}bracks{%
{-Gammapars{k + 1}Psipars{k + 1} +
Gammapars{1}Psipars{1}Gammapars{k + 1}}}
\[5mm] = &
Psipars{k + 1} - Psipars{1} = color{#f00}{H_{k}}
\[1cm]
stackrel{mbox{see} eqref{1}}{implies} & ,,,
bbox[10px,#ffe,border:1px dotted navy]{ds{%
-,{lnpars{1 - x} over 1 - x} = sum_{k = 1}^{infty}H_{k}, x^{k}}}
end{align}
add a comment |
up vote
3
down vote
It is useful to notice that multiplication of a series $A(x)=sum_{n=0}^infty a_nx^n$ with the geometric series $frac{1}{1-x}$ transforms the sequence $(a_n)_{ngeq 0}$ to a sequence of sums $left(sum_{k=0}^na_kright)_{ngeq 0}$. We obtain
begin{align*}
frac{1}{1-x}A(x)&=frac{1}{1-x}sum_{n=0}^infty a_n x^n\
&=sum_{n=0}^infty left(sum_{k=0}^n a_kright) x^ntag{1}
end{align*}
So, it is sufficient to determine the $n$-th coefficient of $A(x)$ in order to also know the $n$-th coefficient of $frac{1}{1-x}A(x)$.
Since the series expansion of $-log (1-x)$ is known to be
begin{align*}
-log(1-x)=sum_{n=1}^infty frac{x^n}{n}qquadqquadqquad |x|<1
end{align*}
it follows from (1)
begin{align*}
-frac{log(1-x)}{1-x}&=frac{1}{1-x}sum_{n=1}^infty frac{x^n}{n}
=sum_{n=1}^infty left(sum_{k=1}^nfrac{1}{k}right)x^n\
&=sum_{n=1}^infty H_nx^n
end{align*}
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With the identity
$ds{pars{1 - x}^{m} = sum_{k = 0}^{infty}
{m choose k}pars{-x}^{k} =
sum_{k = 0}^{infty}{k - m - 1 choose k}x^{k}}$:
begin{equation}
begin{array}{l}
mbox{Derivative respect of} ds{m}:
\
ds{pars{1 - x}^{m}lnpars{1 - x} =
sum_{k = 0}^{infty}bracks{partiald{}{m}{k - m - 1 choose k}}x^{k}}
\[5mm]
mbox{The limit}ds{ m to - 1}:
\
ds{-,{lnpars{1 - x} over 1 - x} =
sum_{k = 0}^{infty}color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}
_{ m = - 1}} x^{k}}
end{array}
label{1}tag{1}
end{equation}
begin{align}
&color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}_{ m = - 1}} =
left.vphantom{Huge A}-,partiald{}{m}bracks{Gammapars{k - m} over k!,Gammapars{-m}}rightvert_{ m = - 1}
\[5mm] = &
-,{1 over k!},
{-Gamma, 'pars{k + 1}Gammapars{1} + Gamma, 'pars{1}Gammapars{k + 1}over Gamma^{2}pars{1}}
\[5mm] = &
-,{1 over k!}bracks{%
{-Gammapars{k + 1}Psipars{k + 1} +
Gammapars{1}Psipars{1}Gammapars{k + 1}}}
\[5mm] = &
Psipars{k + 1} - Psipars{1} = color{#f00}{H_{k}}
\[1cm]
stackrel{mbox{see} eqref{1}}{implies} & ,,,
bbox[10px,#ffe,border:1px dotted navy]{ds{%
-,{lnpars{1 - x} over 1 - x} = sum_{k = 1}^{infty}H_{k}, x^{k}}}
end{align}
add a comment |
up vote
2
down vote
accepted
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With the identity
$ds{pars{1 - x}^{m} = sum_{k = 0}^{infty}
{m choose k}pars{-x}^{k} =
sum_{k = 0}^{infty}{k - m - 1 choose k}x^{k}}$:
begin{equation}
begin{array}{l}
mbox{Derivative respect of} ds{m}:
\
ds{pars{1 - x}^{m}lnpars{1 - x} =
sum_{k = 0}^{infty}bracks{partiald{}{m}{k - m - 1 choose k}}x^{k}}
\[5mm]
mbox{The limit}ds{ m to - 1}:
\
ds{-,{lnpars{1 - x} over 1 - x} =
sum_{k = 0}^{infty}color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}
_{ m = - 1}} x^{k}}
end{array}
label{1}tag{1}
end{equation}
begin{align}
&color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}_{ m = - 1}} =
left.vphantom{Huge A}-,partiald{}{m}bracks{Gammapars{k - m} over k!,Gammapars{-m}}rightvert_{ m = - 1}
\[5mm] = &
-,{1 over k!},
{-Gamma, 'pars{k + 1}Gammapars{1} + Gamma, 'pars{1}Gammapars{k + 1}over Gamma^{2}pars{1}}
\[5mm] = &
-,{1 over k!}bracks{%
{-Gammapars{k + 1}Psipars{k + 1} +
Gammapars{1}Psipars{1}Gammapars{k + 1}}}
\[5mm] = &
Psipars{k + 1} - Psipars{1} = color{#f00}{H_{k}}
\[1cm]
stackrel{mbox{see} eqref{1}}{implies} & ,,,
bbox[10px,#ffe,border:1px dotted navy]{ds{%
-,{lnpars{1 - x} over 1 - x} = sum_{k = 1}^{infty}H_{k}, x^{k}}}
end{align}
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With the identity
$ds{pars{1 - x}^{m} = sum_{k = 0}^{infty}
{m choose k}pars{-x}^{k} =
sum_{k = 0}^{infty}{k - m - 1 choose k}x^{k}}$:
begin{equation}
begin{array}{l}
mbox{Derivative respect of} ds{m}:
\
ds{pars{1 - x}^{m}lnpars{1 - x} =
sum_{k = 0}^{infty}bracks{partiald{}{m}{k - m - 1 choose k}}x^{k}}
\[5mm]
mbox{The limit}ds{ m to - 1}:
\
ds{-,{lnpars{1 - x} over 1 - x} =
sum_{k = 0}^{infty}color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}
_{ m = - 1}} x^{k}}
end{array}
label{1}tag{1}
end{equation}
begin{align}
&color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}_{ m = - 1}} =
left.vphantom{Huge A}-,partiald{}{m}bracks{Gammapars{k - m} over k!,Gammapars{-m}}rightvert_{ m = - 1}
\[5mm] = &
-,{1 over k!},
{-Gamma, 'pars{k + 1}Gammapars{1} + Gamma, 'pars{1}Gammapars{k + 1}over Gamma^{2}pars{1}}
\[5mm] = &
-,{1 over k!}bracks{%
{-Gammapars{k + 1}Psipars{k + 1} +
Gammapars{1}Psipars{1}Gammapars{k + 1}}}
\[5mm] = &
Psipars{k + 1} - Psipars{1} = color{#f00}{H_{k}}
\[1cm]
stackrel{mbox{see} eqref{1}}{implies} & ,,,
bbox[10px,#ffe,border:1px dotted navy]{ds{%
-,{lnpars{1 - x} over 1 - x} = sum_{k = 1}^{infty}H_{k}, x^{k}}}
end{align}
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With the identity
$ds{pars{1 - x}^{m} = sum_{k = 0}^{infty}
{m choose k}pars{-x}^{k} =
sum_{k = 0}^{infty}{k - m - 1 choose k}x^{k}}$:
begin{equation}
begin{array}{l}
mbox{Derivative respect of} ds{m}:
\
ds{pars{1 - x}^{m}lnpars{1 - x} =
sum_{k = 0}^{infty}bracks{partiald{}{m}{k - m - 1 choose k}}x^{k}}
\[5mm]
mbox{The limit}ds{ m to - 1}:
\
ds{-,{lnpars{1 - x} over 1 - x} =
sum_{k = 0}^{infty}color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}
_{ m = - 1}} x^{k}}
end{array}
label{1}tag{1}
end{equation}
begin{align}
&color{#f00}{bracks{-,partiald{}{m}{k - m - 1 choose k}}_{ m = - 1}} =
left.vphantom{Huge A}-,partiald{}{m}bracks{Gammapars{k - m} over k!,Gammapars{-m}}rightvert_{ m = - 1}
\[5mm] = &
-,{1 over k!},
{-Gamma, 'pars{k + 1}Gammapars{1} + Gamma, 'pars{1}Gammapars{k + 1}over Gamma^{2}pars{1}}
\[5mm] = &
-,{1 over k!}bracks{%
{-Gammapars{k + 1}Psipars{k + 1} +
Gammapars{1}Psipars{1}Gammapars{k + 1}}}
\[5mm] = &
Psipars{k + 1} - Psipars{1} = color{#f00}{H_{k}}
\[1cm]
stackrel{mbox{see} eqref{1}}{implies} & ,,,
bbox[10px,#ffe,border:1px dotted navy]{ds{%
-,{lnpars{1 - x} over 1 - x} = sum_{k = 1}^{infty}H_{k}, x^{k}}}
end{align}
edited Nov 12 at 18:20
answered Oct 30 '16 at 17:56
Felix Marin
65.8k7107138
65.8k7107138
add a comment |
add a comment |
up vote
3
down vote
It is useful to notice that multiplication of a series $A(x)=sum_{n=0}^infty a_nx^n$ with the geometric series $frac{1}{1-x}$ transforms the sequence $(a_n)_{ngeq 0}$ to a sequence of sums $left(sum_{k=0}^na_kright)_{ngeq 0}$. We obtain
begin{align*}
frac{1}{1-x}A(x)&=frac{1}{1-x}sum_{n=0}^infty a_n x^n\
&=sum_{n=0}^infty left(sum_{k=0}^n a_kright) x^ntag{1}
end{align*}
So, it is sufficient to determine the $n$-th coefficient of $A(x)$ in order to also know the $n$-th coefficient of $frac{1}{1-x}A(x)$.
Since the series expansion of $-log (1-x)$ is known to be
begin{align*}
-log(1-x)=sum_{n=1}^infty frac{x^n}{n}qquadqquadqquad |x|<1
end{align*}
it follows from (1)
begin{align*}
-frac{log(1-x)}{1-x}&=frac{1}{1-x}sum_{n=1}^infty frac{x^n}{n}
=sum_{n=1}^infty left(sum_{k=1}^nfrac{1}{k}right)x^n\
&=sum_{n=1}^infty H_nx^n
end{align*}
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
add a comment |
up vote
3
down vote
It is useful to notice that multiplication of a series $A(x)=sum_{n=0}^infty a_nx^n$ with the geometric series $frac{1}{1-x}$ transforms the sequence $(a_n)_{ngeq 0}$ to a sequence of sums $left(sum_{k=0}^na_kright)_{ngeq 0}$. We obtain
begin{align*}
frac{1}{1-x}A(x)&=frac{1}{1-x}sum_{n=0}^infty a_n x^n\
&=sum_{n=0}^infty left(sum_{k=0}^n a_kright) x^ntag{1}
end{align*}
So, it is sufficient to determine the $n$-th coefficient of $A(x)$ in order to also know the $n$-th coefficient of $frac{1}{1-x}A(x)$.
Since the series expansion of $-log (1-x)$ is known to be
begin{align*}
-log(1-x)=sum_{n=1}^infty frac{x^n}{n}qquadqquadqquad |x|<1
end{align*}
it follows from (1)
begin{align*}
-frac{log(1-x)}{1-x}&=frac{1}{1-x}sum_{n=1}^infty frac{x^n}{n}
=sum_{n=1}^infty left(sum_{k=1}^nfrac{1}{k}right)x^n\
&=sum_{n=1}^infty H_nx^n
end{align*}
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
add a comment |
up vote
3
down vote
up vote
3
down vote
It is useful to notice that multiplication of a series $A(x)=sum_{n=0}^infty a_nx^n$ with the geometric series $frac{1}{1-x}$ transforms the sequence $(a_n)_{ngeq 0}$ to a sequence of sums $left(sum_{k=0}^na_kright)_{ngeq 0}$. We obtain
begin{align*}
frac{1}{1-x}A(x)&=frac{1}{1-x}sum_{n=0}^infty a_n x^n\
&=sum_{n=0}^infty left(sum_{k=0}^n a_kright) x^ntag{1}
end{align*}
So, it is sufficient to determine the $n$-th coefficient of $A(x)$ in order to also know the $n$-th coefficient of $frac{1}{1-x}A(x)$.
Since the series expansion of $-log (1-x)$ is known to be
begin{align*}
-log(1-x)=sum_{n=1}^infty frac{x^n}{n}qquadqquadqquad |x|<1
end{align*}
it follows from (1)
begin{align*}
-frac{log(1-x)}{1-x}&=frac{1}{1-x}sum_{n=1}^infty frac{x^n}{n}
=sum_{n=1}^infty left(sum_{k=1}^nfrac{1}{k}right)x^n\
&=sum_{n=1}^infty H_nx^n
end{align*}
It is useful to notice that multiplication of a series $A(x)=sum_{n=0}^infty a_nx^n$ with the geometric series $frac{1}{1-x}$ transforms the sequence $(a_n)_{ngeq 0}$ to a sequence of sums $left(sum_{k=0}^na_kright)_{ngeq 0}$. We obtain
begin{align*}
frac{1}{1-x}A(x)&=frac{1}{1-x}sum_{n=0}^infty a_n x^n\
&=sum_{n=0}^infty left(sum_{k=0}^n a_kright) x^ntag{1}
end{align*}
So, it is sufficient to determine the $n$-th coefficient of $A(x)$ in order to also know the $n$-th coefficient of $frac{1}{1-x}A(x)$.
Since the series expansion of $-log (1-x)$ is known to be
begin{align*}
-log(1-x)=sum_{n=1}^infty frac{x^n}{n}qquadqquadqquad |x|<1
end{align*}
it follows from (1)
begin{align*}
-frac{log(1-x)}{1-x}&=frac{1}{1-x}sum_{n=1}^infty frac{x^n}{n}
=sum_{n=1}^infty left(sum_{k=1}^nfrac{1}{k}right)x^n\
&=sum_{n=1}^infty H_nx^n
end{align*}
edited Oct 29 '16 at 22:44
answered Oct 29 '16 at 22:36
Markus Scheuer
58.9k454140
58.9k454140
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
add a comment |
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
I probably wrote the question wrong. I actually started off wanting to sum 1+1/2+1/3+... - so I tried generating functions. By formula for nth coeffiecient I meant something like n*(n+1)/2 for 1+2+3+4+...n
– Adam
Oct 30 '16 at 5:59
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1989255%2fharmonic-series-generating-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown