multi class image classification
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
I am doing scene classification but , I didn't get the correct image classification ,please help me how to do scene classification
I am create a dictionary like this
label_dict={'0':'buildings',
'1':'forest',
'2':'glacier',
'3':'mountain',
'4':'sea' ,
'5':'street' }
But how to classifly the image didn't understandard , I am bulid a model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
strides=2,
activation='relu',
input_shape=(32, 32, 3)))
model.add(Dropout(0.5))
model.add(Conv2D(32, kernel_size=(3, 3), strides=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'])
model.summary(
I got errors are:
ValueError Traceback (most recent call last)
<ipython-input-16-4f5a963b4f20> in <module>
1 model.fit(x_train, y_train,
2 batch_size=128,
----> 3 epochs=5 ,validation_data=(x_test, y_test))
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
950 sample_weight=sample_weight,
951 class_weight=class_weight,
--> 952 batch_size=batch_size)
953 # Prepare validation data.
954 do_validation = False
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
787 feed_output_shapes,
788 check_batch_axis=False, # Don't enforce the batch size.
--> 789 exception_prefix='target')
790
791 # Generate sample-wise weight values given the `sample_weight` and
~/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
136 ': expected ' + names[i] + ' to have shape ' +
137 str(shape) + ' but got array with shape ' +
--> 138 str(data_shape))
139 return data
140
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (6,)
This is my JupyterNotebook like:
http://localhost:8888/notebooks/intel%20image%20classification.ipynb
opencv image-processing
add a comment |
I am doing scene classification but , I didn't get the correct image classification ,please help me how to do scene classification
I am create a dictionary like this
label_dict={'0':'buildings',
'1':'forest',
'2':'glacier',
'3':'mountain',
'4':'sea' ,
'5':'street' }
But how to classifly the image didn't understandard , I am bulid a model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
strides=2,
activation='relu',
input_shape=(32, 32, 3)))
model.add(Dropout(0.5))
model.add(Conv2D(32, kernel_size=(3, 3), strides=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'])
model.summary(
I got errors are:
ValueError Traceback (most recent call last)
<ipython-input-16-4f5a963b4f20> in <module>
1 model.fit(x_train, y_train,
2 batch_size=128,
----> 3 epochs=5 ,validation_data=(x_test, y_test))
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
950 sample_weight=sample_weight,
951 class_weight=class_weight,
--> 952 batch_size=batch_size)
953 # Prepare validation data.
954 do_validation = False
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
787 feed_output_shapes,
788 check_batch_axis=False, # Don't enforce the batch size.
--> 789 exception_prefix='target')
790
791 # Generate sample-wise weight values given the `sample_weight` and
~/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
136 ': expected ' + names[i] + ' to have shape ' +
137 str(shape) + ' but got array with shape ' +
--> 138 str(data_shape))
139 return data
140
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (6,)
This is my JupyterNotebook like:
http://localhost:8888/notebooks/intel%20image%20classification.ipynb
opencv image-processing
add a comment |
I am doing scene classification but , I didn't get the correct image classification ,please help me how to do scene classification
I am create a dictionary like this
label_dict={'0':'buildings',
'1':'forest',
'2':'glacier',
'3':'mountain',
'4':'sea' ,
'5':'street' }
But how to classifly the image didn't understandard , I am bulid a model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
strides=2,
activation='relu',
input_shape=(32, 32, 3)))
model.add(Dropout(0.5))
model.add(Conv2D(32, kernel_size=(3, 3), strides=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'])
model.summary(
I got errors are:
ValueError Traceback (most recent call last)
<ipython-input-16-4f5a963b4f20> in <module>
1 model.fit(x_train, y_train,
2 batch_size=128,
----> 3 epochs=5 ,validation_data=(x_test, y_test))
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
950 sample_weight=sample_weight,
951 class_weight=class_weight,
--> 952 batch_size=batch_size)
953 # Prepare validation data.
954 do_validation = False
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
787 feed_output_shapes,
788 check_batch_axis=False, # Don't enforce the batch size.
--> 789 exception_prefix='target')
790
791 # Generate sample-wise weight values given the `sample_weight` and
~/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
136 ': expected ' + names[i] + ' to have shape ' +
137 str(shape) + ' but got array with shape ' +
--> 138 str(data_shape))
139 return data
140
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (6,)
This is my JupyterNotebook like:
http://localhost:8888/notebooks/intel%20image%20classification.ipynb
opencv image-processing
I am doing scene classification but , I didn't get the correct image classification ,please help me how to do scene classification
I am create a dictionary like this
label_dict={'0':'buildings',
'1':'forest',
'2':'glacier',
'3':'mountain',
'4':'sea' ,
'5':'street' }
But how to classifly the image didn't understandard , I am bulid a model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
strides=2,
activation='relu',
input_shape=(32, 32, 3)))
model.add(Dropout(0.5))
model.add(Conv2D(32, kernel_size=(3, 3), strides=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam',
metrics=['accuracy'])
model.summary(
I got errors are:
ValueError Traceback (most recent call last)
<ipython-input-16-4f5a963b4f20> in <module>
1 model.fit(x_train, y_train,
2 batch_size=128,
----> 3 epochs=5 ,validation_data=(x_test, y_test))
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
950 sample_weight=sample_weight,
951 class_weight=class_weight,
--> 952 batch_size=batch_size)
953 # Prepare validation data.
954 do_validation = False
~/anaconda3/lib/python3.7/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
787 feed_output_shapes,
788 check_batch_axis=False, # Don't enforce the batch size.
--> 789 exception_prefix='target')
790
791 # Generate sample-wise weight values given the `sample_weight` and
~/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
136 ': expected ' + names[i] + ' to have shape ' +
137 str(shape) + ' but got array with shape ' +
--> 138 str(data_shape))
139 return data
140
ValueError: Error when checking target: expected dense_2 to have shape (10,) but got array with shape (6,)
This is my JupyterNotebook like:
http://localhost:8888/notebooks/intel%20image%20classification.ipynb
opencv image-processing
opencv image-processing
asked Feb 21 at 9:44
Suresh MithunSuresh Mithun
62
62
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "89"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faskubuntu.com%2fquestions%2f1120067%2fmulti-class-image-classification%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Ask Ubuntu!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faskubuntu.com%2fquestions%2f1120067%2fmulti-class-image-classification%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown