Integrating $int frac{u ,du}{(a^2+u^2)^{3/2}}$
$begingroup$
How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$
Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?
integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$
Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?
integration indefinite-integrals
$endgroup$
1
$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48
1
$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51
1
$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53
$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38
add a comment |
$begingroup$
How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$
Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?
integration indefinite-integrals
$endgroup$
How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$
Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?
integration indefinite-integrals
integration indefinite-integrals
edited Jan 15 '16 at 19:08
Travis
64.5k769151
64.5k769151
asked Jan 15 '16 at 18:47
Weverton AlisonWeverton Alison
133
133
1
$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48
1
$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51
1
$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53
$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38
add a comment |
1
$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48
1
$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51
1
$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53
$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38
1
1
$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48
$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48
1
1
$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51
$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51
1
1
$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53
$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53
$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38
$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$
Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:
$$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$
$endgroup$
add a comment |
$begingroup$
Let $w=$ some function of $u$ for which $dw = u,du$.
$endgroup$
add a comment |
$begingroup$
Besides the other answers, I would like to expose another way of doing it:
$$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:
If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)
$$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.
Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.
$endgroup$
add a comment |
$begingroup$
You can take the solution as I've presented here:
begin{equation}
int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
end{equation}
Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:
begin{align}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
&= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{align}
Using the relationship between the Beta and the Gamma function we find that:
begin{equation}
Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
end{equation}
Thus,
begin{equation}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{equation}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1613689%2fintegrating-int-fracu-dua2u23-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$
Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:
$$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$
$endgroup$
add a comment |
$begingroup$
$$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$
Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:
$$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$
$endgroup$
add a comment |
$begingroup$
$$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$
Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:
$$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$
$endgroup$
$$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$
Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:
$$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$
answered Jan 15 '16 at 21:02
JanJan
22.1k31440
22.1k31440
add a comment |
add a comment |
$begingroup$
Let $w=$ some function of $u$ for which $dw = u,du$.
$endgroup$
add a comment |
$begingroup$
Let $w=$ some function of $u$ for which $dw = u,du$.
$endgroup$
add a comment |
$begingroup$
Let $w=$ some function of $u$ for which $dw = u,du$.
$endgroup$
Let $w=$ some function of $u$ for which $dw = u,du$.
answered Jan 15 '16 at 20:39
Michael HardyMichael Hardy
1
1
add a comment |
add a comment |
$begingroup$
Besides the other answers, I would like to expose another way of doing it:
$$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:
If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)
$$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.
Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.
$endgroup$
add a comment |
$begingroup$
Besides the other answers, I would like to expose another way of doing it:
$$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:
If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)
$$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.
Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.
$endgroup$
add a comment |
$begingroup$
Besides the other answers, I would like to expose another way of doing it:
$$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:
If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)
$$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.
Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.
$endgroup$
Besides the other answers, I would like to expose another way of doing it:
$$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:
If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)
$$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.
Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.
edited Jan 18 '16 at 17:13
Michael Hardy
1
1
answered Jan 16 '16 at 6:23
DiegoDiego
397312
397312
add a comment |
add a comment |
$begingroup$
You can take the solution as I've presented here:
begin{equation}
int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
end{equation}
Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:
begin{align}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
&= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{align}
Using the relationship between the Beta and the Gamma function we find that:
begin{equation}
Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
end{equation}
Thus,
begin{equation}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{equation}
$endgroup$
add a comment |
$begingroup$
You can take the solution as I've presented here:
begin{equation}
int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
end{equation}
Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:
begin{align}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
&= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{align}
Using the relationship between the Beta and the Gamma function we find that:
begin{equation}
Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
end{equation}
Thus,
begin{equation}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{equation}
$endgroup$
add a comment |
$begingroup$
You can take the solution as I've presented here:
begin{equation}
int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
end{equation}
Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:
begin{align}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
&= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{align}
Using the relationship between the Beta and the Gamma function we find that:
begin{equation}
Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
end{equation}
Thus,
begin{equation}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{equation}
$endgroup$
You can take the solution as I've presented here:
begin{equation}
int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
end{equation}
Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:
begin{align}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
&= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{align}
Using the relationship between the Beta and the Gamma function we find that:
begin{equation}
Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
end{equation}
Thus,
begin{equation}
int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
end{equation}
answered Dec 31 '18 at 0:56
user150203
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1613689%2fintegrating-int-fracu-dua2u23-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48
1
$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51
1
$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53
$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38