Integrating $int frac{u ,du}{(a^2+u^2)^{3/2}}$












2












$begingroup$


How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$



Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
    $endgroup$
    – mickep
    Jan 15 '16 at 18:48






  • 1




    $begingroup$
    A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
    $endgroup$
    – Mark Fischler
    Jan 15 '16 at 18:51








  • 1




    $begingroup$
    if you set $t=a^2+u^2$ you will get $dt=2udu$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 '16 at 18:53










  • $begingroup$
    $partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
    $endgroup$
    – tired
    Jan 15 '16 at 19:38


















2












$begingroup$


How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$



Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
    $endgroup$
    – mickep
    Jan 15 '16 at 18:48






  • 1




    $begingroup$
    A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
    $endgroup$
    – Mark Fischler
    Jan 15 '16 at 18:51








  • 1




    $begingroup$
    if you set $t=a^2+u^2$ you will get $dt=2udu$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 '16 at 18:53










  • $begingroup$
    $partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
    $endgroup$
    – tired
    Jan 15 '16 at 19:38
















2












2








2





$begingroup$


How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$



Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?










share|cite|improve this question











$endgroup$




How does one integrate $$int frac{u ,du}{(a^2+u^2)^{3/2}} ?$$



Looking at it, the substitution rule seems like method of choice. What is the strategy here for choosing a substitution?







integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 '16 at 19:08









Travis

64.5k769151




64.5k769151










asked Jan 15 '16 at 18:47









Weverton AlisonWeverton Alison

133




133








  • 1




    $begingroup$
    The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
    $endgroup$
    – mickep
    Jan 15 '16 at 18:48






  • 1




    $begingroup$
    A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
    $endgroup$
    – Mark Fischler
    Jan 15 '16 at 18:51








  • 1




    $begingroup$
    if you set $t=a^2+u^2$ you will get $dt=2udu$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 '16 at 18:53










  • $begingroup$
    $partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
    $endgroup$
    – tired
    Jan 15 '16 at 19:38
















  • 1




    $begingroup$
    The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
    $endgroup$
    – mickep
    Jan 15 '16 at 18:48






  • 1




    $begingroup$
    A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
    $endgroup$
    – Mark Fischler
    Jan 15 '16 at 18:51








  • 1




    $begingroup$
    if you set $t=a^2+u^2$ you will get $dt=2udu$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 15 '16 at 18:53










  • $begingroup$
    $partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
    $endgroup$
    – tired
    Jan 15 '16 at 19:38










1




1




$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48




$begingroup$
The first one that comes to my mind is $t=a^2+u^2$. Did you try it?
$endgroup$
– mickep
Jan 15 '16 at 18:48




1




1




$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51






$begingroup$
A clumsier one that comes to mind is $t=u^2$, because the $u,du$ is going to pop out when you relate $du$ to $dt$, and because $u^2$ appears in the complicated part of the integrand and it might be easier if that was the variable of integration. This substitution works as well, although @mickep's suggestion is more elegant.
$endgroup$
– Mark Fischler
Jan 15 '16 at 18:51






1




1




$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53




$begingroup$
if you set $t=a^2+u^2$ you will get $dt=2udu$
$endgroup$
– Dr. Sonnhard Graubner
Jan 15 '16 at 18:53












$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38






$begingroup$
$partial_u frac{1}{(u^2+a^2)^{1/2}}= -frac{u}{(u^2+a^2)^{3/2}}$
$endgroup$
– tired
Jan 15 '16 at 19:38












4 Answers
4






active

oldest

votes


















3












$begingroup$

$$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$





Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:





$$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $w=$ some function of $u$ for which $dw = u,du$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Besides the other answers, I would like to expose another way of doing it:



      $$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:



      If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)



      $$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.



      Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.






      share|cite|improve this answer











      $endgroup$





















        0












        $begingroup$

        You can take the solution as I've presented here:



        begin{equation}
        int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
        end{equation}



        Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:



        begin{align}
        int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
        &= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
        end{align}



        Using the relationship between the Beta and the Gamma function we find that:
        begin{equation}
        Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
        end{equation}



        Thus,



        begin{equation}
        int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
        end{equation}






        share|cite|improve this answer









        $endgroup$














          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1613689%2fintegrating-int-fracu-dua2u23-2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          $$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$





          Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:





          $$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$






          share|cite|improve this answer









          $endgroup$


















            3












            $begingroup$

            $$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$





            Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:





            $$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$






            share|cite|improve this answer









            $endgroup$
















              3












              3








              3





              $begingroup$

              $$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$





              Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:





              $$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$






              share|cite|improve this answer









              $endgroup$



              $$intfrac{u}{left(a^2+u^2right)^{frac{3}{2}}}spacetext{d}u=$$





              Substitute $s=a^2+u^2$ and $text{d}s=2uspacetext{d}u$:





              $$frac{1}{2}intfrac{1}{s^{frac{3}{2}}}spacetext{d}s=frac{1}{2}int s^{-frac{3}{2}}spacetext{d}s=frac{1}{2}cdot-frac{2}{sqrt{s}}+text{C}=-frac{1}{sqrt{a^2+u^2}}+text{C}$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 15 '16 at 21:02









              JanJan

              22.1k31440




              22.1k31440























                  1












                  $begingroup$

                  Let $w=$ some function of $u$ for which $dw = u,du$.






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Let $w=$ some function of $u$ for which $dw = u,du$.






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Let $w=$ some function of $u$ for which $dw = u,du$.






                      share|cite|improve this answer









                      $endgroup$



                      Let $w=$ some function of $u$ for which $dw = u,du$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 15 '16 at 20:39









                      Michael HardyMichael Hardy

                      1




                      1























                          0












                          $begingroup$

                          Besides the other answers, I would like to expose another way of doing it:



                          $$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:



                          If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)



                          $$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.



                          Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.






                          share|cite|improve this answer











                          $endgroup$


















                            0












                            $begingroup$

                            Besides the other answers, I would like to expose another way of doing it:



                            $$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:



                            If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)



                            $$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.



                            Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.






                            share|cite|improve this answer











                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              Besides the other answers, I would like to expose another way of doing it:



                              $$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:



                              If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)



                              $$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.



                              Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.






                              share|cite|improve this answer











                              $endgroup$



                              Besides the other answers, I would like to expose another way of doing it:



                              $$int dfrac{x}{(a^2+x^2)^{3/2}} dx=-2int dfrac{1}{(a^2+x^2)^{1/4}}cdot dfrac {dfrac{-x}{2} (a^2+x^2)^{-3/4}}{(a^2+x^2)^{1/2}} , dx$$ We realise now that the second factor is the derivative of the first, so we use $f(x)=x$ and $g(x)=dfrac{1}{(a^2+x^2)^{1/4}}$, to get $int u$ $du= dfrac{u^2}{2}$. Don't forget to multiply by the -2, by which we get $-u^2=-dfrac{1}{(a^2+x^2)^{1/2}}$. Although I think this way to proceed is more intrincate than the other answers, it has the advantage of being generalizable:



                              If $R, l in mathbb{R}$, $$int dfrac{x}{(R+x^2)^l} , dx=int dfrac{1}{(R+x^2)^p}cdot dfrac{x}{(R+x^2)^{p+1}} , dx$$ (here $p=dfrac{l-1}{2}$)



                              $$=dfrac{-1}{2p} int dfrac{1}{(R+x^2)^{p}} cdot dfrac{-2px(R+x^2)^{p-1}}{(R+x^2)^{2p}} , dx =dfrac{-1}{2p} cdot dfrac{u^2}{2}=dfrac{-1}{4p (R+x^2)^{2p}}$$ Recalling that $l=2p+1$, we finally get: $dfrac{1}{(2-2l)(R+x^2)^{l-1}} + text{Constant}$.



                              Edit: I changed the $u$ of the OP by $x$ only for a matter of comfort.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jan 18 '16 at 17:13









                              Michael Hardy

                              1




                              1










                              answered Jan 16 '16 at 6:23









                              DiegoDiego

                              397312




                              397312























                                  0












                                  $begingroup$

                                  You can take the solution as I've presented here:



                                  begin{equation}
                                  int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
                                  end{equation}



                                  Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:



                                  begin{align}
                                  int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
                                  &= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                  end{align}



                                  Using the relationship between the Beta and the Gamma function we find that:
                                  begin{equation}
                                  Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
                                  end{equation}



                                  Thus,



                                  begin{equation}
                                  int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                  end{equation}






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    You can take the solution as I've presented here:



                                    begin{equation}
                                    int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
                                    end{equation}



                                    Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:



                                    begin{align}
                                    int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
                                    &= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                    end{align}



                                    Using the relationship between the Beta and the Gamma function we find that:
                                    begin{equation}
                                    Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
                                    end{equation}



                                    Thus,



                                    begin{equation}
                                    int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                    end{equation}






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      You can take the solution as I've presented here:



                                      begin{equation}
                                      int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
                                      end{equation}



                                      Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:



                                      begin{align}
                                      int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
                                      &= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                      end{align}



                                      Using the relationship between the Beta and the Gamma function we find that:
                                      begin{equation}
                                      Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
                                      end{equation}



                                      Thus,



                                      begin{equation}
                                      int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                      end{equation}






                                      share|cite|improve this answer









                                      $endgroup$



                                      You can take the solution as I've presented here:



                                      begin{equation}
                                      int_0^x frac{t^k}{left(t^n + aright)^m}:dt= frac{1}{n}a^{frac{k + 1}{n} - m} left[Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}right) - Bleft(m - frac{k + 1}{n}, frac{k + 1}{n}, frac{1}{1 + ax^n} right)right]
                                      end{equation}



                                      Here $a$ is $a^2$, $k = 1$, $m = frac{3}{2}$, thus:



                                      begin{align}
                                      int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt &= frac{1}{2}left(a^2right)^{frac{1 + 1}{2} - frac{3}{2}} left[Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}right) - Bleft(frac{3}{2} - frac{1 + 1}{2}, frac{1 + 1}{2}, frac{1}{1 + a^2x^2} right)right] \
                                      &= frac{1}{left|aright|}left[Bleft(frac{1}{2}, 1right) - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                      end{align}



                                      Using the relationship between the Beta and the Gamma function we find that:
                                      begin{equation}
                                      Bleft(frac{1}{2},1 right) = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{Gammaleft(1 + frac{3}{2}right)} = frac{Gammaleft(frac{1}{2} right)Gamma(1)}{frac{1}{2}Gammaleft(frac{1}{2}right)} = 2Gamma(1) = 2
                                      end{equation}



                                      Thus,



                                      begin{equation}
                                      int_0^x frac{t}{left(t^{2} + a^{2}right)^{frac{3}{2}}}:dt = frac{1}{left|aright|}left[2 - Bleft(frac{1}{2},1, frac{1}{1 + a^2x^2} right) right]
                                      end{equation}







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 31 '18 at 0:56







                                      user150203





































                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1613689%2fintegrating-int-fracu-dua2u23-2%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                                          How to change which sound is reproduced for terminal bell?

                                          Can I use Tabulator js library in my java Spring + Thymeleaf project?