For $a_n$ positive, $prod_n frac1{1+a_n}=0$ if and only if $sum_n a_n=infty$.
$begingroup$
This makes sense intuitively but I am not quite sure how to prove it rigorously. Any hints on how to proceed?
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
This makes sense intuitively but I am not quite sure how to prove it rigorously. Any hints on how to proceed?
real-analysis sequences-and-series
$endgroup$
1
$begingroup$
It is helpful to note that, for $a_n$ sufficiently small, we have $frac 1{1+a_n} = 1 - a_n + a_n^2 + cdots approx 1 - a_n$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:40
4
$begingroup$
Alternatively, I find it easier to look at the log $$ logleft[ prod_n frac 1{1 + a_n}right] = -sum_n log(1 + a_n) $$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:43
$begingroup$
@Omnomnomnom Ah of course, I was forgetting that simplification with logarithm. Thanks!
$endgroup$
– Math1000
Dec 31 '18 at 20:48
$begingroup$
It's in the old classic Infinite Sequences And Series, by Bromwich, which I think is available cheap from Dover Publications. This book has no pre-requisite (e.g. no calculus needed). Some editions have slightly different titles. A "companion" theorem is: If $0leq a_n<1$ for all $n$ then $ prod_{n=1}^{infty}(1-a_n)=0 $ iff $ sum_{n=1}^{infty}a_n=infty.$
$endgroup$
– DanielWainfleet
Dec 31 '18 at 20:57
add a comment |
$begingroup$
This makes sense intuitively but I am not quite sure how to prove it rigorously. Any hints on how to proceed?
real-analysis sequences-and-series
$endgroup$
This makes sense intuitively but I am not quite sure how to prove it rigorously. Any hints on how to proceed?
real-analysis sequences-and-series
real-analysis sequences-and-series
asked Dec 31 '18 at 20:39
Math1000Math1000
19.4k31746
19.4k31746
1
$begingroup$
It is helpful to note that, for $a_n$ sufficiently small, we have $frac 1{1+a_n} = 1 - a_n + a_n^2 + cdots approx 1 - a_n$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:40
4
$begingroup$
Alternatively, I find it easier to look at the log $$ logleft[ prod_n frac 1{1 + a_n}right] = -sum_n log(1 + a_n) $$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:43
$begingroup$
@Omnomnomnom Ah of course, I was forgetting that simplification with logarithm. Thanks!
$endgroup$
– Math1000
Dec 31 '18 at 20:48
$begingroup$
It's in the old classic Infinite Sequences And Series, by Bromwich, which I think is available cheap from Dover Publications. This book has no pre-requisite (e.g. no calculus needed). Some editions have slightly different titles. A "companion" theorem is: If $0leq a_n<1$ for all $n$ then $ prod_{n=1}^{infty}(1-a_n)=0 $ iff $ sum_{n=1}^{infty}a_n=infty.$
$endgroup$
– DanielWainfleet
Dec 31 '18 at 20:57
add a comment |
1
$begingroup$
It is helpful to note that, for $a_n$ sufficiently small, we have $frac 1{1+a_n} = 1 - a_n + a_n^2 + cdots approx 1 - a_n$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:40
4
$begingroup$
Alternatively, I find it easier to look at the log $$ logleft[ prod_n frac 1{1 + a_n}right] = -sum_n log(1 + a_n) $$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:43
$begingroup$
@Omnomnomnom Ah of course, I was forgetting that simplification with logarithm. Thanks!
$endgroup$
– Math1000
Dec 31 '18 at 20:48
$begingroup$
It's in the old classic Infinite Sequences And Series, by Bromwich, which I think is available cheap from Dover Publications. This book has no pre-requisite (e.g. no calculus needed). Some editions have slightly different titles. A "companion" theorem is: If $0leq a_n<1$ for all $n$ then $ prod_{n=1}^{infty}(1-a_n)=0 $ iff $ sum_{n=1}^{infty}a_n=infty.$
$endgroup$
– DanielWainfleet
Dec 31 '18 at 20:57
1
1
$begingroup$
It is helpful to note that, for $a_n$ sufficiently small, we have $frac 1{1+a_n} = 1 - a_n + a_n^2 + cdots approx 1 - a_n$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:40
$begingroup$
It is helpful to note that, for $a_n$ sufficiently small, we have $frac 1{1+a_n} = 1 - a_n + a_n^2 + cdots approx 1 - a_n$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:40
4
4
$begingroup$
Alternatively, I find it easier to look at the log $$ logleft[ prod_n frac 1{1 + a_n}right] = -sum_n log(1 + a_n) $$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:43
$begingroup$
Alternatively, I find it easier to look at the log $$ logleft[ prod_n frac 1{1 + a_n}right] = -sum_n log(1 + a_n) $$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:43
$begingroup$
@Omnomnomnom Ah of course, I was forgetting that simplification with logarithm. Thanks!
$endgroup$
– Math1000
Dec 31 '18 at 20:48
$begingroup$
@Omnomnomnom Ah of course, I was forgetting that simplification with logarithm. Thanks!
$endgroup$
– Math1000
Dec 31 '18 at 20:48
$begingroup$
It's in the old classic Infinite Sequences And Series, by Bromwich, which I think is available cheap from Dover Publications. This book has no pre-requisite (e.g. no calculus needed). Some editions have slightly different titles. A "companion" theorem is: If $0leq a_n<1$ for all $n$ then $ prod_{n=1}^{infty}(1-a_n)=0 $ iff $ sum_{n=1}^{infty}a_n=infty.$
$endgroup$
– DanielWainfleet
Dec 31 '18 at 20:57
$begingroup$
It's in the old classic Infinite Sequences And Series, by Bromwich, which I think is available cheap from Dover Publications. This book has no pre-requisite (e.g. no calculus needed). Some editions have slightly different titles. A "companion" theorem is: If $0leq a_n<1$ for all $n$ then $ prod_{n=1}^{infty}(1-a_n)=0 $ iff $ sum_{n=1}^{infty}a_n=infty.$
$endgroup$
– DanielWainfleet
Dec 31 '18 at 20:57
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
I assume $lim_na_n=0$ otherwise it is trivial: then
$$
lnPi_nbig({1over{1+ a_n}}big)=sum -ln(1+a_n),
$$
and this is equivalent to $-sum a_n$ since
$$ln(1+a_n)simeq a_ntext{ if }lim_na_n=0.$$
$endgroup$
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
add a comment |
$begingroup$
Let $a_ngeq 0$ for all $n.$ By induction on $n$ we have $$prod_{j=1}(1+a_j)geq 1+sum_{j=1}^na_j.$$ So if the sum diverges then so does the product.
We have $exp(a_j)geq 1+a_j, $ so $$exp (sum_{j=1}^na_j)geq prod_{j=1}^n(1+a_j).$$ So if the sum converges then so does the product.
$endgroup$
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
add a comment |
$begingroup$
Fact 1: For any $xgeq0$, we have $ln(1+x)leq x$.
Proof: Let $f:[0,infty)rightarrowmathbb{R}$ be defined by $f(x)=x-ln(1+x)$.
Observe that $f'(x)=frac{x}{1+x}geq0,$ so $f$ is increasing. For
any $xin[0,infty)$, we have $f(x)geq f(0)=0$.
/////////////////////////////////
Fact 2: For any $xin[0,1]$, we have $ln(1+x)geqfrac{x}{2}$.
Proof: Let $g:[0,1]rightarrowmathbb{R}$ be defined by $g(x)=ln(1+x)-frac{x}{2}$.
Observe that $g'(x)=frac{1-x}{2(1+x)}geq0$, so $g$ is increasing.
For any $xin[0,1]$, we have $g(x)geq g(0)=0$.
/////////////////////////////////
Let $P_{n}=prod_{k=1}^{n}frac{1}{1+a_{k}}$. Then
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& leq & sum_{k=1}^{n}a_{k}.
end{eqnarray*}
If $P_{n}rightarrow0$, we have $-ln P_{n}rightarrowinfty$, so
$sum_{k=1}^{infty}a_{k}=infty$.
/////////////////////////////////////////////////
For each $k$, let $b_{k}=min(a_{k},1)leq a_{k}$. Then,
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& geq & sum_{k=1}^{n}ln(1+b_{k})\
& geq & frac{1}{2}sum_{k=1}^{n}b_{k}.
end{eqnarray*}
If $sum_{k=1}^{infty}a_{k}=infty$, we will have $sum_{k=1}^{infty}b_{k}=infty$.
(For, consider two cases. Case 1: There exists $N$ such that $a_{k}leq 1$
whenever $kgeq N$. In this case, $sum_{k=1}^{infty}b_{k}geqsum_{k=N}^{infty}b_{k}=sum_{k=N}^{infty}a_{k}=infty$.
Case 2: There does not exist $N$ such that $a_{k}leq 1$ whenever $kgeq N$.
Then, there exists a subsequence $(a_{k_{l}})_{l}$ such that $a_{k_{l}}>1$.
We have that $sum_{k=1}^{infty}b_{k}geqsum_{l=1}^{infty}b_{k_{l}}=sum_{l=1}^{infty}1=infty$.)
Therefore, $-ln P_{n}rightarrowinfty$ and hence $exp(-ln P_{n})rightarrowinfty$.
But $exp(-ln P_{n})=frac{1}{P_{n}}$. It follows that $P_{n}rightarrow0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058029%2ffor-a-n-positive-prod-n-frac11a-n-0-if-and-only-if-sum-n-a-n-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I assume $lim_na_n=0$ otherwise it is trivial: then
$$
lnPi_nbig({1over{1+ a_n}}big)=sum -ln(1+a_n),
$$
and this is equivalent to $-sum a_n$ since
$$ln(1+a_n)simeq a_ntext{ if }lim_na_n=0.$$
$endgroup$
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
add a comment |
$begingroup$
I assume $lim_na_n=0$ otherwise it is trivial: then
$$
lnPi_nbig({1over{1+ a_n}}big)=sum -ln(1+a_n),
$$
and this is equivalent to $-sum a_n$ since
$$ln(1+a_n)simeq a_ntext{ if }lim_na_n=0.$$
$endgroup$
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
add a comment |
$begingroup$
I assume $lim_na_n=0$ otherwise it is trivial: then
$$
lnPi_nbig({1over{1+ a_n}}big)=sum -ln(1+a_n),
$$
and this is equivalent to $-sum a_n$ since
$$ln(1+a_n)simeq a_ntext{ if }lim_na_n=0.$$
$endgroup$
I assume $lim_na_n=0$ otherwise it is trivial: then
$$
lnPi_nbig({1over{1+ a_n}}big)=sum -ln(1+a_n),
$$
and this is equivalent to $-sum a_n$ since
$$ln(1+a_n)simeq a_ntext{ if }lim_na_n=0.$$
edited Jan 1 at 0:00
Daniele Tampieri
2,75721022
2,75721022
answered Dec 31 '18 at 20:43
Tsemo AristideTsemo Aristide
60.9k11446
60.9k11446
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
add a comment |
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
$begingroup$
So $-sum_nlog(1+a_n)=-infty$ would imply that the product is zero, and being finite would imply that the product is positive? Thanks.
$endgroup$
– Math1000
Dec 31 '18 at 20:55
add a comment |
$begingroup$
Let $a_ngeq 0$ for all $n.$ By induction on $n$ we have $$prod_{j=1}(1+a_j)geq 1+sum_{j=1}^na_j.$$ So if the sum diverges then so does the product.
We have $exp(a_j)geq 1+a_j, $ so $$exp (sum_{j=1}^na_j)geq prod_{j=1}^n(1+a_j).$$ So if the sum converges then so does the product.
$endgroup$
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
add a comment |
$begingroup$
Let $a_ngeq 0$ for all $n.$ By induction on $n$ we have $$prod_{j=1}(1+a_j)geq 1+sum_{j=1}^na_j.$$ So if the sum diverges then so does the product.
We have $exp(a_j)geq 1+a_j, $ so $$exp (sum_{j=1}^na_j)geq prod_{j=1}^n(1+a_j).$$ So if the sum converges then so does the product.
$endgroup$
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
add a comment |
$begingroup$
Let $a_ngeq 0$ for all $n.$ By induction on $n$ we have $$prod_{j=1}(1+a_j)geq 1+sum_{j=1}^na_j.$$ So if the sum diverges then so does the product.
We have $exp(a_j)geq 1+a_j, $ so $$exp (sum_{j=1}^na_j)geq prod_{j=1}^n(1+a_j).$$ So if the sum converges then so does the product.
$endgroup$
Let $a_ngeq 0$ for all $n.$ By induction on $n$ we have $$prod_{j=1}(1+a_j)geq 1+sum_{j=1}^na_j.$$ So if the sum diverges then so does the product.
We have $exp(a_j)geq 1+a_j, $ so $$exp (sum_{j=1}^na_j)geq prod_{j=1}^n(1+a_j).$$ So if the sum converges then so does the product.
answered Dec 31 '18 at 21:11
DanielWainfleetDanielWainfleet
36k31648
36k31648
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
add a comment |
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
$begingroup$
I think you're looking at $prod_j (1+a_j)$ as opposed to $prod_j frac1{1+a_j}$ here.
$endgroup$
– Math1000
Dec 31 '18 at 22:05
add a comment |
$begingroup$
Fact 1: For any $xgeq0$, we have $ln(1+x)leq x$.
Proof: Let $f:[0,infty)rightarrowmathbb{R}$ be defined by $f(x)=x-ln(1+x)$.
Observe that $f'(x)=frac{x}{1+x}geq0,$ so $f$ is increasing. For
any $xin[0,infty)$, we have $f(x)geq f(0)=0$.
/////////////////////////////////
Fact 2: For any $xin[0,1]$, we have $ln(1+x)geqfrac{x}{2}$.
Proof: Let $g:[0,1]rightarrowmathbb{R}$ be defined by $g(x)=ln(1+x)-frac{x}{2}$.
Observe that $g'(x)=frac{1-x}{2(1+x)}geq0$, so $g$ is increasing.
For any $xin[0,1]$, we have $g(x)geq g(0)=0$.
/////////////////////////////////
Let $P_{n}=prod_{k=1}^{n}frac{1}{1+a_{k}}$. Then
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& leq & sum_{k=1}^{n}a_{k}.
end{eqnarray*}
If $P_{n}rightarrow0$, we have $-ln P_{n}rightarrowinfty$, so
$sum_{k=1}^{infty}a_{k}=infty$.
/////////////////////////////////////////////////
For each $k$, let $b_{k}=min(a_{k},1)leq a_{k}$. Then,
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& geq & sum_{k=1}^{n}ln(1+b_{k})\
& geq & frac{1}{2}sum_{k=1}^{n}b_{k}.
end{eqnarray*}
If $sum_{k=1}^{infty}a_{k}=infty$, we will have $sum_{k=1}^{infty}b_{k}=infty$.
(For, consider two cases. Case 1: There exists $N$ such that $a_{k}leq 1$
whenever $kgeq N$. In this case, $sum_{k=1}^{infty}b_{k}geqsum_{k=N}^{infty}b_{k}=sum_{k=N}^{infty}a_{k}=infty$.
Case 2: There does not exist $N$ such that $a_{k}leq 1$ whenever $kgeq N$.
Then, there exists a subsequence $(a_{k_{l}})_{l}$ such that $a_{k_{l}}>1$.
We have that $sum_{k=1}^{infty}b_{k}geqsum_{l=1}^{infty}b_{k_{l}}=sum_{l=1}^{infty}1=infty$.)
Therefore, $-ln P_{n}rightarrowinfty$ and hence $exp(-ln P_{n})rightarrowinfty$.
But $exp(-ln P_{n})=frac{1}{P_{n}}$. It follows that $P_{n}rightarrow0$.
$endgroup$
add a comment |
$begingroup$
Fact 1: For any $xgeq0$, we have $ln(1+x)leq x$.
Proof: Let $f:[0,infty)rightarrowmathbb{R}$ be defined by $f(x)=x-ln(1+x)$.
Observe that $f'(x)=frac{x}{1+x}geq0,$ so $f$ is increasing. For
any $xin[0,infty)$, we have $f(x)geq f(0)=0$.
/////////////////////////////////
Fact 2: For any $xin[0,1]$, we have $ln(1+x)geqfrac{x}{2}$.
Proof: Let $g:[0,1]rightarrowmathbb{R}$ be defined by $g(x)=ln(1+x)-frac{x}{2}$.
Observe that $g'(x)=frac{1-x}{2(1+x)}geq0$, so $g$ is increasing.
For any $xin[0,1]$, we have $g(x)geq g(0)=0$.
/////////////////////////////////
Let $P_{n}=prod_{k=1}^{n}frac{1}{1+a_{k}}$. Then
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& leq & sum_{k=1}^{n}a_{k}.
end{eqnarray*}
If $P_{n}rightarrow0$, we have $-ln P_{n}rightarrowinfty$, so
$sum_{k=1}^{infty}a_{k}=infty$.
/////////////////////////////////////////////////
For each $k$, let $b_{k}=min(a_{k},1)leq a_{k}$. Then,
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& geq & sum_{k=1}^{n}ln(1+b_{k})\
& geq & frac{1}{2}sum_{k=1}^{n}b_{k}.
end{eqnarray*}
If $sum_{k=1}^{infty}a_{k}=infty$, we will have $sum_{k=1}^{infty}b_{k}=infty$.
(For, consider two cases. Case 1: There exists $N$ such that $a_{k}leq 1$
whenever $kgeq N$. In this case, $sum_{k=1}^{infty}b_{k}geqsum_{k=N}^{infty}b_{k}=sum_{k=N}^{infty}a_{k}=infty$.
Case 2: There does not exist $N$ such that $a_{k}leq 1$ whenever $kgeq N$.
Then, there exists a subsequence $(a_{k_{l}})_{l}$ such that $a_{k_{l}}>1$.
We have that $sum_{k=1}^{infty}b_{k}geqsum_{l=1}^{infty}b_{k_{l}}=sum_{l=1}^{infty}1=infty$.)
Therefore, $-ln P_{n}rightarrowinfty$ and hence $exp(-ln P_{n})rightarrowinfty$.
But $exp(-ln P_{n})=frac{1}{P_{n}}$. It follows that $P_{n}rightarrow0$.
$endgroup$
add a comment |
$begingroup$
Fact 1: For any $xgeq0$, we have $ln(1+x)leq x$.
Proof: Let $f:[0,infty)rightarrowmathbb{R}$ be defined by $f(x)=x-ln(1+x)$.
Observe that $f'(x)=frac{x}{1+x}geq0,$ so $f$ is increasing. For
any $xin[0,infty)$, we have $f(x)geq f(0)=0$.
/////////////////////////////////
Fact 2: For any $xin[0,1]$, we have $ln(1+x)geqfrac{x}{2}$.
Proof: Let $g:[0,1]rightarrowmathbb{R}$ be defined by $g(x)=ln(1+x)-frac{x}{2}$.
Observe that $g'(x)=frac{1-x}{2(1+x)}geq0$, so $g$ is increasing.
For any $xin[0,1]$, we have $g(x)geq g(0)=0$.
/////////////////////////////////
Let $P_{n}=prod_{k=1}^{n}frac{1}{1+a_{k}}$. Then
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& leq & sum_{k=1}^{n}a_{k}.
end{eqnarray*}
If $P_{n}rightarrow0$, we have $-ln P_{n}rightarrowinfty$, so
$sum_{k=1}^{infty}a_{k}=infty$.
/////////////////////////////////////////////////
For each $k$, let $b_{k}=min(a_{k},1)leq a_{k}$. Then,
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& geq & sum_{k=1}^{n}ln(1+b_{k})\
& geq & frac{1}{2}sum_{k=1}^{n}b_{k}.
end{eqnarray*}
If $sum_{k=1}^{infty}a_{k}=infty$, we will have $sum_{k=1}^{infty}b_{k}=infty$.
(For, consider two cases. Case 1: There exists $N$ such that $a_{k}leq 1$
whenever $kgeq N$. In this case, $sum_{k=1}^{infty}b_{k}geqsum_{k=N}^{infty}b_{k}=sum_{k=N}^{infty}a_{k}=infty$.
Case 2: There does not exist $N$ such that $a_{k}leq 1$ whenever $kgeq N$.
Then, there exists a subsequence $(a_{k_{l}})_{l}$ such that $a_{k_{l}}>1$.
We have that $sum_{k=1}^{infty}b_{k}geqsum_{l=1}^{infty}b_{k_{l}}=sum_{l=1}^{infty}1=infty$.)
Therefore, $-ln P_{n}rightarrowinfty$ and hence $exp(-ln P_{n})rightarrowinfty$.
But $exp(-ln P_{n})=frac{1}{P_{n}}$. It follows that $P_{n}rightarrow0$.
$endgroup$
Fact 1: For any $xgeq0$, we have $ln(1+x)leq x$.
Proof: Let $f:[0,infty)rightarrowmathbb{R}$ be defined by $f(x)=x-ln(1+x)$.
Observe that $f'(x)=frac{x}{1+x}geq0,$ so $f$ is increasing. For
any $xin[0,infty)$, we have $f(x)geq f(0)=0$.
/////////////////////////////////
Fact 2: For any $xin[0,1]$, we have $ln(1+x)geqfrac{x}{2}$.
Proof: Let $g:[0,1]rightarrowmathbb{R}$ be defined by $g(x)=ln(1+x)-frac{x}{2}$.
Observe that $g'(x)=frac{1-x}{2(1+x)}geq0$, so $g$ is increasing.
For any $xin[0,1]$, we have $g(x)geq g(0)=0$.
/////////////////////////////////
Let $P_{n}=prod_{k=1}^{n}frac{1}{1+a_{k}}$. Then
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& leq & sum_{k=1}^{n}a_{k}.
end{eqnarray*}
If $P_{n}rightarrow0$, we have $-ln P_{n}rightarrowinfty$, so
$sum_{k=1}^{infty}a_{k}=infty$.
/////////////////////////////////////////////////
For each $k$, let $b_{k}=min(a_{k},1)leq a_{k}$. Then,
begin{eqnarray*}
-ln P_{n} & = & sum_{k=1}^{n}ln(1+a_{k})\
& geq & sum_{k=1}^{n}ln(1+b_{k})\
& geq & frac{1}{2}sum_{k=1}^{n}b_{k}.
end{eqnarray*}
If $sum_{k=1}^{infty}a_{k}=infty$, we will have $sum_{k=1}^{infty}b_{k}=infty$.
(For, consider two cases. Case 1: There exists $N$ such that $a_{k}leq 1$
whenever $kgeq N$. In this case, $sum_{k=1}^{infty}b_{k}geqsum_{k=N}^{infty}b_{k}=sum_{k=N}^{infty}a_{k}=infty$.
Case 2: There does not exist $N$ such that $a_{k}leq 1$ whenever $kgeq N$.
Then, there exists a subsequence $(a_{k_{l}})_{l}$ such that $a_{k_{l}}>1$.
We have that $sum_{k=1}^{infty}b_{k}geqsum_{l=1}^{infty}b_{k_{l}}=sum_{l=1}^{infty}1=infty$.)
Therefore, $-ln P_{n}rightarrowinfty$ and hence $exp(-ln P_{n})rightarrowinfty$.
But $exp(-ln P_{n})=frac{1}{P_{n}}$. It follows that $P_{n}rightarrow0$.
edited Dec 31 '18 at 21:16
answered Dec 31 '18 at 21:10
Danny Pak-Keung ChanDanny Pak-Keung Chan
2,56938
2,56938
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058029%2ffor-a-n-positive-prod-n-frac11a-n-0-if-and-only-if-sum-n-a-n-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It is helpful to note that, for $a_n$ sufficiently small, we have $frac 1{1+a_n} = 1 - a_n + a_n^2 + cdots approx 1 - a_n$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:40
4
$begingroup$
Alternatively, I find it easier to look at the log $$ logleft[ prod_n frac 1{1 + a_n}right] = -sum_n log(1 + a_n) $$
$endgroup$
– Omnomnomnom
Dec 31 '18 at 20:43
$begingroup$
@Omnomnomnom Ah of course, I was forgetting that simplification with logarithm. Thanks!
$endgroup$
– Math1000
Dec 31 '18 at 20:48
$begingroup$
It's in the old classic Infinite Sequences And Series, by Bromwich, which I think is available cheap from Dover Publications. This book has no pre-requisite (e.g. no calculus needed). Some editions have slightly different titles. A "companion" theorem is: If $0leq a_n<1$ for all $n$ then $ prod_{n=1}^{infty}(1-a_n)=0 $ iff $ sum_{n=1}^{infty}a_n=infty.$
$endgroup$
– DanielWainfleet
Dec 31 '18 at 20:57