Evaluating $int frac{cos x}{sin^3x+sin x}dx$












2












$begingroup$


Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.



My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$



$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$



I'm stuck here.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
    $endgroup$
    – Doug M
    Dec 13 '18 at 16:47
















2












$begingroup$


Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.



My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$



$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$



I'm stuck here.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
    $endgroup$
    – Doug M
    Dec 13 '18 at 16:47














2












2








2





$begingroup$


Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.



My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$



$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$



I'm stuck here.










share|cite|improve this question











$endgroup$




Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.



My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$



$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$



I'm stuck here.







calculus integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 12:35









AryanSonwatikar

471114




471114










asked Dec 13 '18 at 16:12









MathxxMathxx

3,41811444




3,41811444












  • $begingroup$
    Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
    $endgroup$
    – Doug M
    Dec 13 '18 at 16:47


















  • $begingroup$
    Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
    $endgroup$
    – Doug M
    Dec 13 '18 at 16:47
















$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47




$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47










2 Answers
2






active

oldest

votes


















7












$begingroup$

If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Hint:



    $sin x=uimplies $



    $$int g(x) dx=intdfrac{du}{u(u^2+1)}$$



    Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$



    $implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$



    Comparing the coefficients of $u,u^2$ and the constants



    $implies C=0,A=1,A+B=0iff B=-A=?$



    Can you take it from here?






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038216%2fevaluating-int-frac-cos-x-sin3x-sin-xdx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?






      share|cite|improve this answer











      $endgroup$


















        7












        $begingroup$

        If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?






        share|cite|improve this answer











        $endgroup$
















          7












          7








          7





          $begingroup$

          If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?






          share|cite|improve this answer











          $endgroup$



          If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 13 '18 at 16:25









          Shubham Johri

          5,525818




          5,525818










          answered Dec 13 '18 at 16:16









          José Carlos SantosJosé Carlos Santos

          173k23133241




          173k23133241























              3












              $begingroup$

              Hint:



              $sin x=uimplies $



              $$int g(x) dx=intdfrac{du}{u(u^2+1)}$$



              Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$



              $implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$



              Comparing the coefficients of $u,u^2$ and the constants



              $implies C=0,A=1,A+B=0iff B=-A=?$



              Can you take it from here?






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Hint:



                $sin x=uimplies $



                $$int g(x) dx=intdfrac{du}{u(u^2+1)}$$



                Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$



                $implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$



                Comparing the coefficients of $u,u^2$ and the constants



                $implies C=0,A=1,A+B=0iff B=-A=?$



                Can you take it from here?






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Hint:



                  $sin x=uimplies $



                  $$int g(x) dx=intdfrac{du}{u(u^2+1)}$$



                  Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$



                  $implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$



                  Comparing the coefficients of $u,u^2$ and the constants



                  $implies C=0,A=1,A+B=0iff B=-A=?$



                  Can you take it from here?






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  $sin x=uimplies $



                  $$int g(x) dx=intdfrac{du}{u(u^2+1)}$$



                  Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$



                  $implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$



                  Comparing the coefficients of $u,u^2$ and the constants



                  $implies C=0,A=1,A+B=0iff B=-A=?$



                  Can you take it from here?







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 13 '18 at 16:16









                  lab bhattacharjeelab bhattacharjee

                  228k15158279




                  228k15158279






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038216%2fevaluating-int-frac-cos-x-sin3x-sin-xdx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to change which sound is reproduced for terminal bell?

                      Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                      Can I use Tabulator js library in my java Spring + Thymeleaf project?