Evaluating $int frac{cos x}{sin^3x+sin x}dx$
$begingroup$
Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.
My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$
$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$
I'm stuck here.
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.
My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$
$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$
I'm stuck here.
calculus integration indefinite-integrals
$endgroup$
$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47
add a comment |
$begingroup$
Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.
My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$
$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$
I'm stuck here.
calculus integration indefinite-integrals
$endgroup$
Given the function $$g(x)=frac{cos x}{sin^3x+sin x}$$, by letting $u=sin x$, show that $$int g(x) dx=intleft(frac{A}{u}+frac{Bu+C}{u^2+1}right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $int g(x)dx$.
My attempt,
$$g(x)=frac{cos x}{sin^2 x(sin x+1)}$$
$$=frac{sqrt{1-u^2}}{u^2(u+1)}$$
I'm stuck here.
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Dec 14 '18 at 12:35
AryanSonwatikar
471114
471114
asked Dec 13 '18 at 16:12
MathxxMathxx
3,41811444
3,41811444
$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47
add a comment |
$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47
$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47
$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Hint:
$sin x=uimplies $
$$int g(x) dx=intdfrac{du}{u(u^2+1)}$$
Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$
$implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$
Comparing the coefficients of $u,u^2$ and the constants
$implies C=0,A=1,A+B=0iff B=-A=?$
Can you take it from here?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038216%2fevaluating-int-frac-cos-x-sin3x-sin-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?
$endgroup$
add a comment |
$begingroup$
If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?
$endgroup$
add a comment |
$begingroup$
If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?
$endgroup$
If you do $u=sin x$, then you must also do $mathrm du=cos x,mathrm dx$. So$$intfrac{cos x}{sin^3x+sin x},mathrm dx$$becomes$$intfrac1{u^3+u},mathrm du=intfrac1{u(u^2+1)},mathrm du.$$Can you take it from here?
edited Dec 13 '18 at 16:25
Shubham Johri
5,525818
5,525818
answered Dec 13 '18 at 16:16
José Carlos SantosJosé Carlos Santos
173k23133241
173k23133241
add a comment |
add a comment |
$begingroup$
Hint:
$sin x=uimplies $
$$int g(x) dx=intdfrac{du}{u(u^2+1)}$$
Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$
$implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$
Comparing the coefficients of $u,u^2$ and the constants
$implies C=0,A=1,A+B=0iff B=-A=?$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Hint:
$sin x=uimplies $
$$int g(x) dx=intdfrac{du}{u(u^2+1)}$$
Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$
$implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$
Comparing the coefficients of $u,u^2$ and the constants
$implies C=0,A=1,A+B=0iff B=-A=?$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Hint:
$sin x=uimplies $
$$int g(x) dx=intdfrac{du}{u(u^2+1)}$$
Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$
$implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$
Comparing the coefficients of $u,u^2$ and the constants
$implies C=0,A=1,A+B=0iff B=-A=?$
Can you take it from here?
$endgroup$
Hint:
$sin x=uimplies $
$$int g(x) dx=intdfrac{du}{u(u^2+1)}$$
Now using Partial Fraction Decomposition let $dfrac1{u(u^2+1)}=dfrac Au+dfrac{Bu+C}{u^2+1}$
$implies1=A(u^2+1)+u(Bu+C)=u^2(A+B)+Cu+A$
Comparing the coefficients of $u,u^2$ and the constants
$implies C=0,A=1,A+B=0iff B=-A=?$
Can you take it from here?
answered Dec 13 '18 at 16:16
lab bhattacharjeelab bhattacharjee
228k15158279
228k15158279
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038216%2fevaluating-int-frac-cos-x-sin3x-sin-xdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Interesting that the recommended solution uses partial fractions rather than a second trig substitution.
$endgroup$
– Doug M
Dec 13 '18 at 16:47