convergence $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $
$begingroup$
How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.
sequences-and-series
$endgroup$
1
$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27
$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30
add a comment |
$begingroup$
How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.
sequences-and-series
$endgroup$
How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.
sequences-and-series
sequences-and-series
edited Dec 13 '18 at 16:30
VirtualUser
asked Dec 13 '18 at 16:24
VirtualUserVirtualUser
1,293317
1,293317
1
$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27
$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30
add a comment |
1
$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27
$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30
1
1
$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27
$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27
$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30
$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using Root test,
$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$
$endgroup$
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038239%2fconvergence-sum-n-1-infty-2n-cdot-left-fracnn1-rightn2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using Root test,
$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$
$endgroup$
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
add a comment |
$begingroup$
Using Root test,
$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$
$endgroup$
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
add a comment |
$begingroup$
Using Root test,
$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$
$endgroup$
Using Root test,
$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$
answered Dec 13 '18 at 16:26
lab bhattacharjeelab bhattacharjee
228k15158279
228k15158279
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
add a comment |
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038239%2fconvergence-sum-n-1-infty-2n-cdot-left-fracnn1-rightn2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27
$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30