convergence $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $












3












$begingroup$


How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
    $endgroup$
    – Did
    Dec 13 '18 at 16:27












  • $begingroup$
    Ahh.. My fail, your right, thanks
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:30
















3












$begingroup$


How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
    $endgroup$
    – Did
    Dec 13 '18 at 16:27












  • $begingroup$
    Ahh.. My fail, your right, thanks
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:30














3












3








3





$begingroup$


How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.










share|cite|improve this question











$endgroup$




How can I check convergence of $ sum_{n=1}^{infty} 2^n cdot left(frac{n}{n+1}right)^{n^2} $ ?
If I want check necessary condition $u_n rightarrow 0$ I need to do sth like that:
$$ u_n = 2^n cdot left(frac{n}{n+1}right)^{n^2} = 2^n cdot left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 $$ but now I can't write just
$$ left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2 rightarrow frac{1}{e^2}$$ because I have $ 2^n $ part...
Thanks for your time.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 16:30







VirtualUser

















asked Dec 13 '18 at 16:24









VirtualUserVirtualUser

1,293317




1,293317








  • 1




    $begingroup$
    Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
    $endgroup$
    – Did
    Dec 13 '18 at 16:27












  • $begingroup$
    Ahh.. My fail, your right, thanks
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:30














  • 1




    $begingroup$
    Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
    $endgroup$
    – Did
    Dec 13 '18 at 16:27












  • $begingroup$
    Ahh.. My fail, your right, thanks
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:30








1




1




$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27






$begingroup$
Hmmm... $$left(frac{n}{n+1}right)^{n^2} ne left(left(frac{1}{1+frac{1}{n}}right)^{n}right)^2=left(frac{n}{n+1}right)^{2n} $$
$endgroup$
– Did
Dec 13 '18 at 16:27














$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30




$begingroup$
Ahh.. My fail, your right, thanks
$endgroup$
– VirtualUser
Dec 13 '18 at 16:30










1 Answer
1






active

oldest

votes


















4












$begingroup$

Using Root test,



$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:32














Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038239%2fconvergence-sum-n-1-infty-2n-cdot-left-fracnn1-rightn2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Using Root test,



$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:32


















4












$begingroup$

Using Root test,



$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:32
















4












4








4





$begingroup$

Using Root test,



$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$






share|cite|improve this answer









$endgroup$



Using Root test,



$$lim_{ntoinfty}sqrt[n]{u_n}=dfrac2{lim_{ntoinfty}left(1+dfrac1nright)^n}=dfrac2e<1$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 13 '18 at 16:26









lab bhattacharjeelab bhattacharjee

228k15158279




228k15158279












  • $begingroup$
    It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:32




















  • $begingroup$
    It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
    $endgroup$
    – VirtualUser
    Dec 13 '18 at 16:32


















$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32






$begingroup$
It is great idea! $frac{1}{e} in left(frac{1}{2};frac{1}{3} right) $ so it is clearly under $1$. But how can I solve necessary condition? I can't use there root test
$endgroup$
– VirtualUser
Dec 13 '18 at 16:32




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038239%2fconvergence-sum-n-1-infty-2n-cdot-left-fracnn1-rightn2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?