tf.keras.layers.Concatenate() works with a list but fails on a tuple of tensors












3















This will work:



tf.keras.layers.Concatenate()([features['a'], features['b']])


While this:



tf.keras.layers.Concatenate()((features['a'], features['b']))


Results in:



TypeError: int() argument must be a string or a number, not 'TensorShapeV1'


Is that expected? If so - why does it matter what sequence do I pass?



Thanks,
Zach



EDIT (adding a code example):



import pandas as pd
import numpy as np

data = {
'a': [1.0, 2.0, 3.0],
'b': [0.1, 0.3, 0.2],
}

with tf.Session() as sess:
ds = tf.data.Dataset.from_tensor_slices(data)
ds = ds.batch(1)

it = ds.make_one_shot_iterator()
features = it.get_next()

concat = tf.keras.layers.Concatenate()((features['a'], features['b']))


try:
while True:
print(sess.run(concat))
except tf.errors.OutOfRangeError:
pass


---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-135-0e1a45017941> in <module>()
6 features = it.get_next()
7
----> 8 concat = tf.keras.layers.Concatenate()((features['a'], features['b']))
9
10

google3/third_party/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
751 # the user has manually overwritten the build method do we need to
752 # build it.
--> 753 self.build(input_shapes)
754 # We must set self.built since user defined build functions are not
755 # constrained to set self.built.

google3/third_party/tensorflow/python/keras/utils/tf_utils.py in wrapper(instance, input_shape)
148 tuple(tensor_shape.TensorShape(x).as_list()) for x in input_shape]
149 else:
--> 150 input_shape = tuple(tensor_shape.TensorShape(input_shape).as_list())
151 output_shape = fn(instance, input_shape)
152 if output_shape is not None:

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, dims)
688 else:
689 # Got a list of dimensions
--> 690 self._dims = [as_dimension(d) for d in dims_iter]
691
692 @property

google3/third_party/tensorflow/python/framework/tensor_shape.py in as_dimension(value)
630 return value
631 else:
--> 632 return Dimension(value)
633
634

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, value)
183 raise TypeError("Cannot convert %s to Dimension" % value)
184 else:
--> 185 self._value = int(value)
186 if (not isinstance(value, compat.bytes_or_text_types) and
187 self._value != value):

TypeError: int() argument must be a string or a number, not 'TensorShapeV1'









share|improve this question

























  • Could you add the stack trace and a minimal reproducible example?

    – today
    Nov 21 '18 at 11:37
















3















This will work:



tf.keras.layers.Concatenate()([features['a'], features['b']])


While this:



tf.keras.layers.Concatenate()((features['a'], features['b']))


Results in:



TypeError: int() argument must be a string or a number, not 'TensorShapeV1'


Is that expected? If so - why does it matter what sequence do I pass?



Thanks,
Zach



EDIT (adding a code example):



import pandas as pd
import numpy as np

data = {
'a': [1.0, 2.0, 3.0],
'b': [0.1, 0.3, 0.2],
}

with tf.Session() as sess:
ds = tf.data.Dataset.from_tensor_slices(data)
ds = ds.batch(1)

it = ds.make_one_shot_iterator()
features = it.get_next()

concat = tf.keras.layers.Concatenate()((features['a'], features['b']))


try:
while True:
print(sess.run(concat))
except tf.errors.OutOfRangeError:
pass


---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-135-0e1a45017941> in <module>()
6 features = it.get_next()
7
----> 8 concat = tf.keras.layers.Concatenate()((features['a'], features['b']))
9
10

google3/third_party/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
751 # the user has manually overwritten the build method do we need to
752 # build it.
--> 753 self.build(input_shapes)
754 # We must set self.built since user defined build functions are not
755 # constrained to set self.built.

google3/third_party/tensorflow/python/keras/utils/tf_utils.py in wrapper(instance, input_shape)
148 tuple(tensor_shape.TensorShape(x).as_list()) for x in input_shape]
149 else:
--> 150 input_shape = tuple(tensor_shape.TensorShape(input_shape).as_list())
151 output_shape = fn(instance, input_shape)
152 if output_shape is not None:

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, dims)
688 else:
689 # Got a list of dimensions
--> 690 self._dims = [as_dimension(d) for d in dims_iter]
691
692 @property

google3/third_party/tensorflow/python/framework/tensor_shape.py in as_dimension(value)
630 return value
631 else:
--> 632 return Dimension(value)
633
634

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, value)
183 raise TypeError("Cannot convert %s to Dimension" % value)
184 else:
--> 185 self._value = int(value)
186 if (not isinstance(value, compat.bytes_or_text_types) and
187 self._value != value):

TypeError: int() argument must be a string or a number, not 'TensorShapeV1'









share|improve this question

























  • Could you add the stack trace and a minimal reproducible example?

    – today
    Nov 21 '18 at 11:37














3












3








3








This will work:



tf.keras.layers.Concatenate()([features['a'], features['b']])


While this:



tf.keras.layers.Concatenate()((features['a'], features['b']))


Results in:



TypeError: int() argument must be a string or a number, not 'TensorShapeV1'


Is that expected? If so - why does it matter what sequence do I pass?



Thanks,
Zach



EDIT (adding a code example):



import pandas as pd
import numpy as np

data = {
'a': [1.0, 2.0, 3.0],
'b': [0.1, 0.3, 0.2],
}

with tf.Session() as sess:
ds = tf.data.Dataset.from_tensor_slices(data)
ds = ds.batch(1)

it = ds.make_one_shot_iterator()
features = it.get_next()

concat = tf.keras.layers.Concatenate()((features['a'], features['b']))


try:
while True:
print(sess.run(concat))
except tf.errors.OutOfRangeError:
pass


---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-135-0e1a45017941> in <module>()
6 features = it.get_next()
7
----> 8 concat = tf.keras.layers.Concatenate()((features['a'], features['b']))
9
10

google3/third_party/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
751 # the user has manually overwritten the build method do we need to
752 # build it.
--> 753 self.build(input_shapes)
754 # We must set self.built since user defined build functions are not
755 # constrained to set self.built.

google3/third_party/tensorflow/python/keras/utils/tf_utils.py in wrapper(instance, input_shape)
148 tuple(tensor_shape.TensorShape(x).as_list()) for x in input_shape]
149 else:
--> 150 input_shape = tuple(tensor_shape.TensorShape(input_shape).as_list())
151 output_shape = fn(instance, input_shape)
152 if output_shape is not None:

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, dims)
688 else:
689 # Got a list of dimensions
--> 690 self._dims = [as_dimension(d) for d in dims_iter]
691
692 @property

google3/third_party/tensorflow/python/framework/tensor_shape.py in as_dimension(value)
630 return value
631 else:
--> 632 return Dimension(value)
633
634

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, value)
183 raise TypeError("Cannot convert %s to Dimension" % value)
184 else:
--> 185 self._value = int(value)
186 if (not isinstance(value, compat.bytes_or_text_types) and
187 self._value != value):

TypeError: int() argument must be a string or a number, not 'TensorShapeV1'









share|improve this question
















This will work:



tf.keras.layers.Concatenate()([features['a'], features['b']])


While this:



tf.keras.layers.Concatenate()((features['a'], features['b']))


Results in:



TypeError: int() argument must be a string or a number, not 'TensorShapeV1'


Is that expected? If so - why does it matter what sequence do I pass?



Thanks,
Zach



EDIT (adding a code example):



import pandas as pd
import numpy as np

data = {
'a': [1.0, 2.0, 3.0],
'b': [0.1, 0.3, 0.2],
}

with tf.Session() as sess:
ds = tf.data.Dataset.from_tensor_slices(data)
ds = ds.batch(1)

it = ds.make_one_shot_iterator()
features = it.get_next()

concat = tf.keras.layers.Concatenate()((features['a'], features['b']))


try:
while True:
print(sess.run(concat))
except tf.errors.OutOfRangeError:
pass


---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-135-0e1a45017941> in <module>()
6 features = it.get_next()
7
----> 8 concat = tf.keras.layers.Concatenate()((features['a'], features['b']))
9
10

google3/third_party/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
751 # the user has manually overwritten the build method do we need to
752 # build it.
--> 753 self.build(input_shapes)
754 # We must set self.built since user defined build functions are not
755 # constrained to set self.built.

google3/third_party/tensorflow/python/keras/utils/tf_utils.py in wrapper(instance, input_shape)
148 tuple(tensor_shape.TensorShape(x).as_list()) for x in input_shape]
149 else:
--> 150 input_shape = tuple(tensor_shape.TensorShape(input_shape).as_list())
151 output_shape = fn(instance, input_shape)
152 if output_shape is not None:

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, dims)
688 else:
689 # Got a list of dimensions
--> 690 self._dims = [as_dimension(d) for d in dims_iter]
691
692 @property

google3/third_party/tensorflow/python/framework/tensor_shape.py in as_dimension(value)
630 return value
631 else:
--> 632 return Dimension(value)
633
634

google3/third_party/tensorflow/python/framework/tensor_shape.py in __init__(self, value)
183 raise TypeError("Cannot convert %s to Dimension" % value)
184 else:
--> 185 self._value = int(value)
186 if (not isinstance(value, compat.bytes_or_text_types) and
187 self._value != value):

TypeError: int() argument must be a string or a number, not 'TensorShapeV1'






tensorflow keras






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 21 '18 at 12:41







Zach Moshe

















asked Nov 21 '18 at 10:48









Zach MosheZach Moshe

1,27521330




1,27521330













  • Could you add the stack trace and a minimal reproducible example?

    – today
    Nov 21 '18 at 11:37



















  • Could you add the stack trace and a minimal reproducible example?

    – today
    Nov 21 '18 at 11:37

















Could you add the stack trace and a minimal reproducible example?

– today
Nov 21 '18 at 11:37





Could you add the stack trace and a minimal reproducible example?

– today
Nov 21 '18 at 11:37












1 Answer
1






active

oldest

votes


















2














https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L329



comment on the concanate class states it requires a list.
this class calls K.backend's concatenate function
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L2041



which also states it requires a list.



in tensorflow https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/ops/array_ops.py#L1034



also states it requires a list of tensors. Why? I don't know. in this function the tensors (variable called "values") actually gets checked if its a list or tuple. but somewhere along the way you still get an error.






share|improve this answer
























  • Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

    – Zach Moshe
    Nov 21 '18 at 12:42











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53410419%2ftf-keras-layers-concatenate-works-with-a-list-but-fails-on-a-tuple-of-tensors%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L329



comment on the concanate class states it requires a list.
this class calls K.backend's concatenate function
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L2041



which also states it requires a list.



in tensorflow https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/ops/array_ops.py#L1034



also states it requires a list of tensors. Why? I don't know. in this function the tensors (variable called "values") actually gets checked if its a list or tuple. but somewhere along the way you still get an error.






share|improve this answer
























  • Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

    – Zach Moshe
    Nov 21 '18 at 12:42
















2














https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L329



comment on the concanate class states it requires a list.
this class calls K.backend's concatenate function
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L2041



which also states it requires a list.



in tensorflow https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/ops/array_ops.py#L1034



also states it requires a list of tensors. Why? I don't know. in this function the tensors (variable called "values") actually gets checked if its a list or tuple. but somewhere along the way you still get an error.






share|improve this answer
























  • Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

    – Zach Moshe
    Nov 21 '18 at 12:42














2












2








2







https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L329



comment on the concanate class states it requires a list.
this class calls K.backend's concatenate function
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L2041



which also states it requires a list.



in tensorflow https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/ops/array_ops.py#L1034



also states it requires a list of tensors. Why? I don't know. in this function the tensors (variable called "values") actually gets checked if its a list or tuple. but somewhere along the way you still get an error.






share|improve this answer













https://github.com/keras-team/keras/blob/master/keras/layers/merge.py#L329



comment on the concanate class states it requires a list.
this class calls K.backend's concatenate function
https://github.com/keras-team/keras/blob/master/keras/backend/tensorflow_backend.py#L2041



which also states it requires a list.



in tensorflow https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/python/ops/array_ops.py#L1034



also states it requires a list of tensors. Why? I don't know. in this function the tensors (variable called "values") actually gets checked if its a list or tuple. but somewhere along the way you still get an error.







share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 21 '18 at 12:03









Mete Han KahramanMete Han Kahraman

42017




42017













  • Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

    – Zach Moshe
    Nov 21 '18 at 12:42



















  • Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

    – Zach Moshe
    Nov 21 '18 at 12:42

















Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

– Zach Moshe
Nov 21 '18 at 12:42





Thanks. Really weird.. I expected any kind of a sequence (if not just an iterable) to work here..

– Zach Moshe
Nov 21 '18 at 12:42




















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53410419%2ftf-keras-layers-concatenate-works-with-a-list-but-fails-on-a-tuple-of-tensors%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents