Multi-column calculation in pandas












1















I've got this long algebra formula that I need to apply to a dataframe:



def experience_mod(A, B, C, D, T, W):
E = (T-A)
F = (C-D)

xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))

return xmod

A = loss['actual_primary_losses']
B = loss['ballast']
C = loss['ExpectedLosses']
D = loss['ExpectedPrimaryLosses']
T = loss['ActualIncurred']
W = loss['weight']


How would I write this to calculate the experience_mod() for every row?



something like this?



loss['ExperienceRating'] = loss.apply(experience_mod(A,B,C,D,T,W) axis = 0)









share|improve this question


















  • 1





    Pandas support vectorized operations, so if you have a dataframe A and a dataframe B, A - B, A + B, etc.. are valid operations.

    – MedAli
    Nov 21 '18 at 17:01











  • @MedAli ahh, ty

    – James
    Nov 21 '18 at 17:07
















1















I've got this long algebra formula that I need to apply to a dataframe:



def experience_mod(A, B, C, D, T, W):
E = (T-A)
F = (C-D)

xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))

return xmod

A = loss['actual_primary_losses']
B = loss['ballast']
C = loss['ExpectedLosses']
D = loss['ExpectedPrimaryLosses']
T = loss['ActualIncurred']
W = loss['weight']


How would I write this to calculate the experience_mod() for every row?



something like this?



loss['ExperienceRating'] = loss.apply(experience_mod(A,B,C,D,T,W) axis = 0)









share|improve this question


















  • 1





    Pandas support vectorized operations, so if you have a dataframe A and a dataframe B, A - B, A + B, etc.. are valid operations.

    – MedAli
    Nov 21 '18 at 17:01











  • @MedAli ahh, ty

    – James
    Nov 21 '18 at 17:07














1












1








1


0






I've got this long algebra formula that I need to apply to a dataframe:



def experience_mod(A, B, C, D, T, W):
E = (T-A)
F = (C-D)

xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))

return xmod

A = loss['actual_primary_losses']
B = loss['ballast']
C = loss['ExpectedLosses']
D = loss['ExpectedPrimaryLosses']
T = loss['ActualIncurred']
W = loss['weight']


How would I write this to calculate the experience_mod() for every row?



something like this?



loss['ExperienceRating'] = loss.apply(experience_mod(A,B,C,D,T,W) axis = 0)









share|improve this question














I've got this long algebra formula that I need to apply to a dataframe:



def experience_mod(A, B, C, D, T, W):
E = (T-A)
F = (C-D)

xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))

return xmod

A = loss['actual_primary_losses']
B = loss['ballast']
C = loss['ExpectedLosses']
D = loss['ExpectedPrimaryLosses']
T = loss['ActualIncurred']
W = loss['weight']


How would I write this to calculate the experience_mod() for every row?



something like this?



loss['ExperienceRating'] = loss.apply(experience_mod(A,B,C,D,T,W) axis = 0)






pandas






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 21 '18 at 16:58









JamesJames

30127




30127








  • 1





    Pandas support vectorized operations, so if you have a dataframe A and a dataframe B, A - B, A + B, etc.. are valid operations.

    – MedAli
    Nov 21 '18 at 17:01











  • @MedAli ahh, ty

    – James
    Nov 21 '18 at 17:07














  • 1





    Pandas support vectorized operations, so if you have a dataframe A and a dataframe B, A - B, A + B, etc.. are valid operations.

    – MedAli
    Nov 21 '18 at 17:01











  • @MedAli ahh, ty

    – James
    Nov 21 '18 at 17:07








1




1





Pandas support vectorized operations, so if you have a dataframe A and a dataframe B, A - B, A + B, etc.. are valid operations.

– MedAli
Nov 21 '18 at 17:01





Pandas support vectorized operations, so if you have a dataframe A and a dataframe B, A - B, A + B, etc.. are valid operations.

– MedAli
Nov 21 '18 at 17:01













@MedAli ahh, ty

– James
Nov 21 '18 at 17:07





@MedAli ahh, ty

– James
Nov 21 '18 at 17:07












1 Answer
1






active

oldest

votes


















2














Pandas and the underlying library, numpy, it's using, support vectorized operations, so given two dataframes A and B, operations like A + B, A - B etc are valid.



Your code works fine, you need to apply the function to the columns directly and assign the results back to the new column ExperienceRating,





Here's a working example:



In [1]: import pandas as pd 

In [2]: import numpy as np

In [3]: df = pd.DataFrame(np.random.randn(6,6), columns=list('ABCDTW'))

In [4]: df
Out[4]:
A B C D T W
0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152
1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794
2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025
3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889
4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466
5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953

In [5]: def experience_mod(A, B, C, D, T, W):
...: E = (T-A)
...: F = (C-D)
...:
...: xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))
...:
...: return xmod
...:

In [6]: experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])
Out[6]:
0 1.465387
1 -2.060483
2 1.000469
3 1.173070
4 7.406756
5 -0.449957
dtype: float64

In [7]: df['ExperienceRating'] = experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])

In [8]: df
Out[8]:
A B C D T W ExperienceRating
0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152 1.465387
1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794 -2.060483
2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025 1.000469
3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889 1.173070
4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466 7.406756
5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953 -0.449957





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53417088%2fmulti-column-calculation-in-pandas%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    Pandas and the underlying library, numpy, it's using, support vectorized operations, so given two dataframes A and B, operations like A + B, A - B etc are valid.



    Your code works fine, you need to apply the function to the columns directly and assign the results back to the new column ExperienceRating,





    Here's a working example:



    In [1]: import pandas as pd 

    In [2]: import numpy as np

    In [3]: df = pd.DataFrame(np.random.randn(6,6), columns=list('ABCDTW'))

    In [4]: df
    Out[4]:
    A B C D T W
    0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152
    1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794
    2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025
    3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889
    4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466
    5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953

    In [5]: def experience_mod(A, B, C, D, T, W):
    ...: E = (T-A)
    ...: F = (C-D)
    ...:
    ...: xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))
    ...:
    ...: return xmod
    ...:

    In [6]: experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])
    Out[6]:
    0 1.465387
    1 -2.060483
    2 1.000469
    3 1.173070
    4 7.406756
    5 -0.449957
    dtype: float64

    In [7]: df['ExperienceRating'] = experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])

    In [8]: df
    Out[8]:
    A B C D T W ExperienceRating
    0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152 1.465387
    1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794 -2.060483
    2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025 1.000469
    3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889 1.173070
    4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466 7.406756
    5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953 -0.449957





    share|improve this answer




























      2














      Pandas and the underlying library, numpy, it's using, support vectorized operations, so given two dataframes A and B, operations like A + B, A - B etc are valid.



      Your code works fine, you need to apply the function to the columns directly and assign the results back to the new column ExperienceRating,





      Here's a working example:



      In [1]: import pandas as pd 

      In [2]: import numpy as np

      In [3]: df = pd.DataFrame(np.random.randn(6,6), columns=list('ABCDTW'))

      In [4]: df
      Out[4]:
      A B C D T W
      0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152
      1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794
      2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025
      3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889
      4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466
      5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953

      In [5]: def experience_mod(A, B, C, D, T, W):
      ...: E = (T-A)
      ...: F = (C-D)
      ...:
      ...: xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))
      ...:
      ...: return xmod
      ...:

      In [6]: experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])
      Out[6]:
      0 1.465387
      1 -2.060483
      2 1.000469
      3 1.173070
      4 7.406756
      5 -0.449957
      dtype: float64

      In [7]: df['ExperienceRating'] = experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])

      In [8]: df
      Out[8]:
      A B C D T W ExperienceRating
      0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152 1.465387
      1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794 -2.060483
      2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025 1.000469
      3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889 1.173070
      4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466 7.406756
      5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953 -0.449957





      share|improve this answer


























        2












        2








        2







        Pandas and the underlying library, numpy, it's using, support vectorized operations, so given two dataframes A and B, operations like A + B, A - B etc are valid.



        Your code works fine, you need to apply the function to the columns directly and assign the results back to the new column ExperienceRating,





        Here's a working example:



        In [1]: import pandas as pd 

        In [2]: import numpy as np

        In [3]: df = pd.DataFrame(np.random.randn(6,6), columns=list('ABCDTW'))

        In [4]: df
        Out[4]:
        A B C D T W
        0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152
        1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794
        2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025
        3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889
        4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466
        5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953

        In [5]: def experience_mod(A, B, C, D, T, W):
        ...: E = (T-A)
        ...: F = (C-D)
        ...:
        ...: xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))
        ...:
        ...: return xmod
        ...:

        In [6]: experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])
        Out[6]:
        0 1.465387
        1 -2.060483
        2 1.000469
        3 1.173070
        4 7.406756
        5 -0.449957
        dtype: float64

        In [7]: df['ExperienceRating'] = experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])

        In [8]: df
        Out[8]:
        A B C D T W ExperienceRating
        0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152 1.465387
        1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794 -2.060483
        2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025 1.000469
        3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889 1.173070
        4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466 7.406756
        5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953 -0.449957





        share|improve this answer













        Pandas and the underlying library, numpy, it's using, support vectorized operations, so given two dataframes A and B, operations like A + B, A - B etc are valid.



        Your code works fine, you need to apply the function to the columns directly and assign the results back to the new column ExperienceRating,





        Here's a working example:



        In [1]: import pandas as pd 

        In [2]: import numpy as np

        In [3]: df = pd.DataFrame(np.random.randn(6,6), columns=list('ABCDTW'))

        In [4]: df
        Out[4]:
        A B C D T W
        0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152
        1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794
        2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025
        3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889
        4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466
        5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953

        In [5]: def experience_mod(A, B, C, D, T, W):
        ...: E = (T-A)
        ...: F = (C-D)
        ...:
        ...: xmod = (A + B + (E*W) + ((1-W)*F))/(D + B + (F*W) + ((1-W)*F))
        ...:
        ...: return xmod
        ...:

        In [6]: experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])
        Out[6]:
        0 1.465387
        1 -2.060483
        2 1.000469
        3 1.173070
        4 7.406756
        5 -0.449957
        dtype: float64

        In [7]: df['ExperienceRating'] = experience_mod(df["A"], df["B"], df["C"], df["D"], df["T"], df["W"])

        In [8]: df
        Out[8]:
        A B C D T W ExperienceRating
        0 0.049617 0.082861 2.289549 -0.783082 -0.691990 -0.071152 1.465387
        1 0.722605 0.209683 -0.347372 0.254951 0.468615 -0.132794 -2.060483
        2 -0.301469 -1.849026 -0.334381 -0.365116 -0.238384 -1.999025 1.000469
        3 -0.554925 -0.859044 -0.637079 -1.040336 0.627027 -0.955889 1.173070
        4 -2.024621 -0.539384 0.006734 0.117628 -0.215070 -0.661466 7.406756
        5 1.942926 -0.433067 -1.034814 -0.292179 0.744039 0.233953 -0.449957






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 21 '18 at 17:14









        MedAliMedAli

        7,17874182




        7,17874182
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53417088%2fmulti-column-calculation-in-pandas%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents