BitNot does not flip bits in the way I expected












7












$begingroup$


Can anyone explain why the last result in these statements is not the bit-flipped version of arr?



(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) In[190]:= FromDigits[%, 2]

(Debug) Out[190]= 34

(Debug) In[191]:= BitNot[%]

(Debug) Out[191]= -35

(Debug) In[192]:= IntegerDigits[%, 2, 8]

(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}









share|improve this question











$endgroup$








  • 5




    $begingroup$
    "IntegerDigits[n] discards the sign of n."
    $endgroup$
    – kglr
    Mar 12 at 21:37












  • $begingroup$
    Is there a work around?
    $endgroup$
    – bc888
    Mar 12 at 21:43










  • $begingroup$
    not any I know of.
    $endgroup$
    – kglr
    Mar 12 at 21:44






  • 9




    $begingroup$
    Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that BitNot[n] is simply equivalent to -1-n."
    $endgroup$
    – Chip Hurst
    Mar 12 at 22:00






  • 1




    $begingroup$
    If you just want to flip "bits" in an array of 1/0 elements without the need to go between integer representation, just use BitXor[1,array]...
    $endgroup$
    – ciao
    Mar 14 at 6:34
















7












$begingroup$


Can anyone explain why the last result in these statements is not the bit-flipped version of arr?



(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) In[190]:= FromDigits[%, 2]

(Debug) Out[190]= 34

(Debug) In[191]:= BitNot[%]

(Debug) Out[191]= -35

(Debug) In[192]:= IntegerDigits[%, 2, 8]

(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}









share|improve this question











$endgroup$








  • 5




    $begingroup$
    "IntegerDigits[n] discards the sign of n."
    $endgroup$
    – kglr
    Mar 12 at 21:37












  • $begingroup$
    Is there a work around?
    $endgroup$
    – bc888
    Mar 12 at 21:43










  • $begingroup$
    not any I know of.
    $endgroup$
    – kglr
    Mar 12 at 21:44






  • 9




    $begingroup$
    Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that BitNot[n] is simply equivalent to -1-n."
    $endgroup$
    – Chip Hurst
    Mar 12 at 22:00






  • 1




    $begingroup$
    If you just want to flip "bits" in an array of 1/0 elements without the need to go between integer representation, just use BitXor[1,array]...
    $endgroup$
    – ciao
    Mar 14 at 6:34














7












7








7


1



$begingroup$


Can anyone explain why the last result in these statements is not the bit-flipped version of arr?



(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) In[190]:= FromDigits[%, 2]

(Debug) Out[190]= 34

(Debug) In[191]:= BitNot[%]

(Debug) Out[191]= -35

(Debug) In[192]:= IntegerDigits[%, 2, 8]

(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}









share|improve this question











$endgroup$




Can anyone explain why the last result in these statements is not the bit-flipped version of arr?



(Debug) In[189]:= arr = {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) Out[189]= {0, 0, 1, 0, 0, 0, 1, 0}

(Debug) In[190]:= FromDigits[%, 2]

(Debug) Out[190]= 34

(Debug) In[191]:= BitNot[%]

(Debug) Out[191]= -35

(Debug) In[192]:= IntegerDigits[%, 2, 8]

(Debug) Out[192]= {0, 0, 1, 0, 0, 0, 1, 1}






binary






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 12 at 22:45









m_goldberg

87.7k872198




87.7k872198










asked Mar 12 at 21:30









bc888bc888

764




764








  • 5




    $begingroup$
    "IntegerDigits[n] discards the sign of n."
    $endgroup$
    – kglr
    Mar 12 at 21:37












  • $begingroup$
    Is there a work around?
    $endgroup$
    – bc888
    Mar 12 at 21:43










  • $begingroup$
    not any I know of.
    $endgroup$
    – kglr
    Mar 12 at 21:44






  • 9




    $begingroup$
    Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that BitNot[n] is simply equivalent to -1-n."
    $endgroup$
    – Chip Hurst
    Mar 12 at 22:00






  • 1




    $begingroup$
    If you just want to flip "bits" in an array of 1/0 elements without the need to go between integer representation, just use BitXor[1,array]...
    $endgroup$
    – ciao
    Mar 14 at 6:34














  • 5




    $begingroup$
    "IntegerDigits[n] discards the sign of n."
    $endgroup$
    – kglr
    Mar 12 at 21:37












  • $begingroup$
    Is there a work around?
    $endgroup$
    – bc888
    Mar 12 at 21:43










  • $begingroup$
    not any I know of.
    $endgroup$
    – kglr
    Mar 12 at 21:44






  • 9




    $begingroup$
    Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that BitNot[n] is simply equivalent to -1-n."
    $endgroup$
    – Chip Hurst
    Mar 12 at 22:00






  • 1




    $begingroup$
    If you just want to flip "bits" in an array of 1/0 elements without the need to go between integer representation, just use BitXor[1,array]...
    $endgroup$
    – ciao
    Mar 14 at 6:34








5




5




$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
Mar 12 at 21:37






$begingroup$
"IntegerDigits[n] discards the sign of n."
$endgroup$
– kglr
Mar 12 at 21:37














$begingroup$
Is there a work around?
$endgroup$
– bc888
Mar 12 at 21:43




$begingroup$
Is there a work around?
$endgroup$
– bc888
Mar 12 at 21:43












$begingroup$
not any I know of.
$endgroup$
– kglr
Mar 12 at 21:44




$begingroup$
not any I know of.
$endgroup$
– kglr
Mar 12 at 21:44




9




9




$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that BitNot[n] is simply equivalent to -1-n."
$endgroup$
– Chip Hurst
Mar 12 at 22:00




$begingroup$
Integers can have arbitrary length, so how many leading zeros should be flipped? The documentation clarifies: "Integers are assumed to be represented in two's complement form, with an unlimited number of digits, so that BitNot[n] is simply equivalent to -1-n."
$endgroup$
– Chip Hurst
Mar 12 at 22:00




1




1




$begingroup$
If you just want to flip "bits" in an array of 1/0 elements without the need to go between integer representation, just use BitXor[1,array]...
$endgroup$
– ciao
Mar 14 at 6:34




$begingroup$
If you just want to flip "bits" in an array of 1/0 elements without the need to go between integer representation, just use BitXor[1,array]...
$endgroup$
– ciao
Mar 14 at 6:34










4 Answers
4






active

oldest

votes


















9












$begingroup$

I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.



twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
twosComplement[35, 8]
(* {1, 1, 0, 1, 1, 1, 0, 1} *)





share|improve this answer









$endgroup$





















    10












    $begingroup$

    twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
    twosComplement[35, 8]



    {1, 1, 0, 1, 1, 1, 0, 1}







    share|improve this answer









    $endgroup$





















      5












      $begingroup$

      Without using IntegerDigits:



      With[{n = 34}, 
      {n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
      {100010₂, 11101₂}

      With[{n = 34, p = 8},
      {n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
      {100010₂, 11011101₂}





      share|improve this answer









      $endgroup$





















        4












        $begingroup$

        FlipBits[num_Integer, len_.] := 
        Module[{arr}, arr = IntegerDigits[num, 2, len];
        1 - arr]





        share|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193136%2fbitnot-does-not-flip-bits-in-the-way-i-expected%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9












          $begingroup$

          I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.



          twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
          twosComplement[35, 8]
          (* {1, 1, 0, 1, 1, 1, 0, 1} *)





          share|improve this answer









          $endgroup$


















            9












            $begingroup$

            I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.



            twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
            twosComplement[35, 8]
            (* {1, 1, 0, 1, 1, 1, 0, 1} *)





            share|improve this answer









            $endgroup$
















              9












              9








              9





              $begingroup$

              I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.



              twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
              twosComplement[35, 8]
              (* {1, 1, 0, 1, 1, 1, 0, 1} *)





              share|improve this answer









              $endgroup$



              I don't think there is a built-in function to generate the two's complement representation. Easy to implement though.



              twosComplement[x_, n_] := IntegerDigits[2^x - n, 2, n]
              twosComplement[35, 8]
              (* {1, 1, 0, 1, 1, 1, 0, 1} *)






              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Mar 12 at 22:03









              Rohit NamjoshiRohit Namjoshi

              1,4701213




              1,4701213























                  10












                  $begingroup$

                  twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
                  twosComplement[35, 8]



                  {1, 1, 0, 1, 1, 1, 0, 1}







                  share|improve this answer









                  $endgroup$


















                    10












                    $begingroup$

                    twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
                    twosComplement[35, 8]



                    {1, 1, 0, 1, 1, 1, 0, 1}







                    share|improve this answer









                    $endgroup$
















                      10












                      10








                      10





                      $begingroup$

                      twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
                      twosComplement[35, 8]



                      {1, 1, 0, 1, 1, 1, 0, 1}







                      share|improve this answer









                      $endgroup$



                      twosComplement[x_, n_] := UnitBox@IntegerDigits[x, 2, n]
                      twosComplement[35, 8]



                      {1, 1, 0, 1, 1, 1, 0, 1}








                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Mar 12 at 22:14









                      Okkes DulgerciOkkes Dulgerci

                      5,4141919




                      5,4141919























                          5












                          $begingroup$

                          Without using IntegerDigits:



                          With[{n = 34}, 
                          {n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
                          {100010₂, 11101₂}

                          With[{n = 34, p = 8},
                          {n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
                          {100010₂, 11011101₂}





                          share|improve this answer









                          $endgroup$


















                            5












                            $begingroup$

                            Without using IntegerDigits:



                            With[{n = 34}, 
                            {n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
                            {100010₂, 11101₂}

                            With[{n = 34, p = 8},
                            {n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
                            {100010₂, 11011101₂}





                            share|improve this answer









                            $endgroup$
















                              5












                              5








                              5





                              $begingroup$

                              Without using IntegerDigits:



                              With[{n = 34}, 
                              {n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
                              {100010₂, 11101₂}

                              With[{n = 34, p = 8},
                              {n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
                              {100010₂, 11011101₂}





                              share|improve this answer









                              $endgroup$



                              Without using IntegerDigits:



                              With[{n = 34}, 
                              {n, BitXor[BitShiftLeft[1, BitLength[n]] - 1, n]} // BaseForm[#, 2] &]
                              {100010₂, 11101₂}

                              With[{n = 34, p = 8},
                              {n, BitXor[BitShiftLeft[1, p] - 1, n]} // BaseForm[#, 2] &]
                              {100010₂, 11011101₂}






                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered Mar 12 at 22:33









                              J. M. is slightly pensiveJ. M. is slightly pensive

                              98.1k10306465




                              98.1k10306465























                                  4












                                  $begingroup$

                                  FlipBits[num_Integer, len_.] := 
                                  Module[{arr}, arr = IntegerDigits[num, 2, len];
                                  1 - arr]





                                  share|improve this answer









                                  $endgroup$


















                                    4












                                    $begingroup$

                                    FlipBits[num_Integer, len_.] := 
                                    Module[{arr}, arr = IntegerDigits[num, 2, len];
                                    1 - arr]





                                    share|improve this answer









                                    $endgroup$
















                                      4












                                      4








                                      4





                                      $begingroup$

                                      FlipBits[num_Integer, len_.] := 
                                      Module[{arr}, arr = IntegerDigits[num, 2, len];
                                      1 - arr]





                                      share|improve this answer









                                      $endgroup$



                                      FlipBits[num_Integer, len_.] := 
                                      Module[{arr}, arr = IntegerDigits[num, 2, len];
                                      1 - arr]






                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered Mar 12 at 21:55









                                      bc888bc888

                                      764




                                      764






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematica Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193136%2fbitnot-does-not-flip-bits-in-the-way-i-expected%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          How to change which sound is reproduced for terminal bell?

                                          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                                          Can I use Tabulator js library in my java Spring + Thymeleaf project?