Monte Carlo double integral over surface of $|x|+|y| leq 1$
$begingroup$
$iint_{|x|+|y|le1}!x^2,dxdy$
I am supposed to calculate this by using Monte Carlo integration. Can anyone give basic hints or directions? I know the idea behind the Monte Carlo integration method but my brain can't seem to be able to grasp any straw at how to solve this.
monte-carlo
$endgroup$
add a comment |
$begingroup$
$iint_{|x|+|y|le1}!x^2,dxdy$
I am supposed to calculate this by using Monte Carlo integration. Can anyone give basic hints or directions? I know the idea behind the Monte Carlo integration method but my brain can't seem to be able to grasp any straw at how to solve this.
monte-carlo
$endgroup$
add a comment |
$begingroup$
$iint_{|x|+|y|le1}!x^2,dxdy$
I am supposed to calculate this by using Monte Carlo integration. Can anyone give basic hints or directions? I know the idea behind the Monte Carlo integration method but my brain can't seem to be able to grasp any straw at how to solve this.
monte-carlo
$endgroup$
$iint_{|x|+|y|le1}!x^2,dxdy$
I am supposed to calculate this by using Monte Carlo integration. Can anyone give basic hints or directions? I know the idea behind the Monte Carlo integration method but my brain can't seem to be able to grasp any straw at how to solve this.
monte-carlo
monte-carlo
edited Dec 9 '18 at 20:01
postmortes
2,18531322
2,18531322
asked Dec 9 '18 at 19:40
That guy who is bad at mathThat guy who is bad at math
134
134
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Enclose your integration in $displaystyle{left[-1,1right)^{,2}}$. The Monte-Carlo integration becomes $left(~overline overline{phantom{AAA}}mbox{means average with an uniform distibution over} left[-1,1right)^{,2}~right)$
begin{align}
S_{N} & = sum_{i = 1}^{N}x_{i}^{2}
left[vphantom{Large A}leftvert x_{i}rightvert +
leftvert y_{i}rightvert leq 1right]
\[2mm]
overline{S_{N}} & = N overline{x^{2}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]} =
Nint_{-1}^{1}int_{-1}^{1}{1 over 4}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y
\[5mm]
& implies int_{-1}^{1}int_{-1}^{1}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y = 4,{overline{S_{N}} over N}
approx bbox[10px,#ffd,border:1px groove navy]
{4,{S_{N} over N}}
end{align}
The following code is a $texttt{javascript}$ script which can be run in a terminal with $texttt{node.js}$:
"use strict";
const ITERATIONS = 10000;
let i = 0, theSum = 0, x = null, y = null;
while (i < ITERATIONS) {
x = 2.0*Math.random() - 1.0;
y = 2.0*Math.random() - 1.0;
if (Math.abs(x) + Math.abs(y) <= 1.0) theSum += x*x;
++i;
}
console.log(4.0*(theSum/ITERATIONS));
A typical "run" yields $bbox[10px,#ffd,border:1px groove navy]{displaystyle 0.3302123390009306}$. The exact result is
$bbox[10px,#ffd,border:1px groove navy]
{displaystyle{1 over 3}}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032861%2fmonte-carlo-double-integral-over-surface-of-xy-leq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Enclose your integration in $displaystyle{left[-1,1right)^{,2}}$. The Monte-Carlo integration becomes $left(~overline overline{phantom{AAA}}mbox{means average with an uniform distibution over} left[-1,1right)^{,2}~right)$
begin{align}
S_{N} & = sum_{i = 1}^{N}x_{i}^{2}
left[vphantom{Large A}leftvert x_{i}rightvert +
leftvert y_{i}rightvert leq 1right]
\[2mm]
overline{S_{N}} & = N overline{x^{2}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]} =
Nint_{-1}^{1}int_{-1}^{1}{1 over 4}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y
\[5mm]
& implies int_{-1}^{1}int_{-1}^{1}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y = 4,{overline{S_{N}} over N}
approx bbox[10px,#ffd,border:1px groove navy]
{4,{S_{N} over N}}
end{align}
The following code is a $texttt{javascript}$ script which can be run in a terminal with $texttt{node.js}$:
"use strict";
const ITERATIONS = 10000;
let i = 0, theSum = 0, x = null, y = null;
while (i < ITERATIONS) {
x = 2.0*Math.random() - 1.0;
y = 2.0*Math.random() - 1.0;
if (Math.abs(x) + Math.abs(y) <= 1.0) theSum += x*x;
++i;
}
console.log(4.0*(theSum/ITERATIONS));
A typical "run" yields $bbox[10px,#ffd,border:1px groove navy]{displaystyle 0.3302123390009306}$. The exact result is
$bbox[10px,#ffd,border:1px groove navy]
{displaystyle{1 over 3}}$.
$endgroup$
add a comment |
$begingroup$
Enclose your integration in $displaystyle{left[-1,1right)^{,2}}$. The Monte-Carlo integration becomes $left(~overline overline{phantom{AAA}}mbox{means average with an uniform distibution over} left[-1,1right)^{,2}~right)$
begin{align}
S_{N} & = sum_{i = 1}^{N}x_{i}^{2}
left[vphantom{Large A}leftvert x_{i}rightvert +
leftvert y_{i}rightvert leq 1right]
\[2mm]
overline{S_{N}} & = N overline{x^{2}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]} =
Nint_{-1}^{1}int_{-1}^{1}{1 over 4}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y
\[5mm]
& implies int_{-1}^{1}int_{-1}^{1}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y = 4,{overline{S_{N}} over N}
approx bbox[10px,#ffd,border:1px groove navy]
{4,{S_{N} over N}}
end{align}
The following code is a $texttt{javascript}$ script which can be run in a terminal with $texttt{node.js}$:
"use strict";
const ITERATIONS = 10000;
let i = 0, theSum = 0, x = null, y = null;
while (i < ITERATIONS) {
x = 2.0*Math.random() - 1.0;
y = 2.0*Math.random() - 1.0;
if (Math.abs(x) + Math.abs(y) <= 1.0) theSum += x*x;
++i;
}
console.log(4.0*(theSum/ITERATIONS));
A typical "run" yields $bbox[10px,#ffd,border:1px groove navy]{displaystyle 0.3302123390009306}$. The exact result is
$bbox[10px,#ffd,border:1px groove navy]
{displaystyle{1 over 3}}$.
$endgroup$
add a comment |
$begingroup$
Enclose your integration in $displaystyle{left[-1,1right)^{,2}}$. The Monte-Carlo integration becomes $left(~overline overline{phantom{AAA}}mbox{means average with an uniform distibution over} left[-1,1right)^{,2}~right)$
begin{align}
S_{N} & = sum_{i = 1}^{N}x_{i}^{2}
left[vphantom{Large A}leftvert x_{i}rightvert +
leftvert y_{i}rightvert leq 1right]
\[2mm]
overline{S_{N}} & = N overline{x^{2}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]} =
Nint_{-1}^{1}int_{-1}^{1}{1 over 4}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y
\[5mm]
& implies int_{-1}^{1}int_{-1}^{1}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y = 4,{overline{S_{N}} over N}
approx bbox[10px,#ffd,border:1px groove navy]
{4,{S_{N} over N}}
end{align}
The following code is a $texttt{javascript}$ script which can be run in a terminal with $texttt{node.js}$:
"use strict";
const ITERATIONS = 10000;
let i = 0, theSum = 0, x = null, y = null;
while (i < ITERATIONS) {
x = 2.0*Math.random() - 1.0;
y = 2.0*Math.random() - 1.0;
if (Math.abs(x) + Math.abs(y) <= 1.0) theSum += x*x;
++i;
}
console.log(4.0*(theSum/ITERATIONS));
A typical "run" yields $bbox[10px,#ffd,border:1px groove navy]{displaystyle 0.3302123390009306}$. The exact result is
$bbox[10px,#ffd,border:1px groove navy]
{displaystyle{1 over 3}}$.
$endgroup$
Enclose your integration in $displaystyle{left[-1,1right)^{,2}}$. The Monte-Carlo integration becomes $left(~overline overline{phantom{AAA}}mbox{means average with an uniform distibution over} left[-1,1right)^{,2}~right)$
begin{align}
S_{N} & = sum_{i = 1}^{N}x_{i}^{2}
left[vphantom{Large A}leftvert x_{i}rightvert +
leftvert y_{i}rightvert leq 1right]
\[2mm]
overline{S_{N}} & = N overline{x^{2}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]} =
Nint_{-1}^{1}int_{-1}^{1}{1 over 4}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y
\[5mm]
& implies int_{-1}^{1}int_{-1}^{1}
left[vphantom{Large A}leftvert xrightvert +
leftvert yrightvert leq 1right]x^{2}
,mathrm{d}x,mathrm{d}y = 4,{overline{S_{N}} over N}
approx bbox[10px,#ffd,border:1px groove navy]
{4,{S_{N} over N}}
end{align}
The following code is a $texttt{javascript}$ script which can be run in a terminal with $texttt{node.js}$:
"use strict";
const ITERATIONS = 10000;
let i = 0, theSum = 0, x = null, y = null;
while (i < ITERATIONS) {
x = 2.0*Math.random() - 1.0;
y = 2.0*Math.random() - 1.0;
if (Math.abs(x) + Math.abs(y) <= 1.0) theSum += x*x;
++i;
}
console.log(4.0*(theSum/ITERATIONS));
A typical "run" yields $bbox[10px,#ffd,border:1px groove navy]{displaystyle 0.3302123390009306}$. The exact result is
$bbox[10px,#ffd,border:1px groove navy]
{displaystyle{1 over 3}}$.
edited Dec 10 '18 at 18:36
answered Dec 9 '18 at 21:56
Felix MarinFelix Marin
68.7k7109146
68.7k7109146
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032861%2fmonte-carlo-double-integral-over-surface-of-xy-leq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown