Applying the Euler-Lagrange equations to Maxwell's Theory
$begingroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$
and then he computes the following
$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
$endgroup$
add a comment |
$begingroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$
and then he computes the following
$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
$endgroup$
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
add a comment |
$begingroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$
and then he computes the following
$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
$endgroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$
and then he computes the following
$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
edited Mar 18 at 7:26
Qmechanic♦
107k121981229
107k121981229
asked Mar 18 at 5:05
LimzyLimzy
304
304
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
add a comment |
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is
$$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467109%2fapplying-the-euler-lagrange-equations-to-maxwells-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is
$$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
add a comment |
$begingroup$
We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is
$$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
add a comment |
$begingroup$
We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is
$$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is
$$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$
where I've freely labeled and relabeled dummy indices.
answered Mar 18 at 5:13
DwaggDwagg
619113
619113
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467109%2fapplying-the-euler-lagrange-equations-to-maxwells-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09