Applying the Euler-Lagrange equations to Maxwell's Theory












4












$begingroup$


In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be



$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$



and then he computes the following



$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$



I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
    $endgroup$
    – Qmechanic
    Mar 18 at 11:09
















4












$begingroup$


In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be



$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$



and then he computes the following



$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$



I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
    $endgroup$
    – Qmechanic
    Mar 18 at 11:09














4












4








4


1



$begingroup$


In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be



$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$



and then he computes the following



$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$



I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!










share|cite|improve this question











$endgroup$




In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be



$$
mathcal{L} = -frac{1}{2}(partial_mu A_nu)(partial^mu A^nu) + frac{1}{2}(partial_mu A^mu)^2
$$



and then he computes the following



$$
frac{partialmathcal{L}}{partial(partial_mu A_nu)} = -partial_mu A_nu + (partial_rho A^rho)eta^{munu}.
$$



I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!







homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 18 at 7:26









Qmechanic

107k121981229




107k121981229










asked Mar 18 at 5:05









LimzyLimzy

304




304












  • $begingroup$
    Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
    $endgroup$
    – Qmechanic
    Mar 18 at 11:09


















  • $begingroup$
    Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
    $endgroup$
    – Qmechanic
    Mar 18 at 11:09
















$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic
Mar 18 at 11:09




$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic
Mar 18 at 11:09










1 Answer
1






active

oldest

votes


















4












$begingroup$

We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is



$$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$



where I've freely labeled and relabeled dummy indices.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "151"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467109%2fapplying-the-euler-lagrange-equations-to-maxwells-theory%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is



    $$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$



    where I've freely labeled and relabeled dummy indices.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is



      $$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$



      where I've freely labeled and relabeled dummy indices.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is



        $$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$



        where I've freely labeled and relabeled dummy indices.






        share|cite|improve this answer









        $endgroup$



        We have $frac12 (partial_{mu}A^{mu})^2 = frac12 (partial_{alpha} A^{alpha})(partial_{beta}A^{beta})= frac12 (partial_{alpha} A_{sigma}) eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}$ so the derivative w.r.t. $partial_{mu} A_{nu}$ is



        $$frac12delta_{alpha}^{mu} delta_{sigma}^{nu} eta^{sigmaalpha}(partial_{beta}A_{rho}) eta^{rhobeta}+frac12(partial_{alpha} A_{sigma}) eta^{sigmaalpha}delta_{beta}^{mu} delta_{rho}^{nu} eta^{rhobeta}= frac12 eta^{munu} (partial_{beta} A^{beta})+frac12 (partial_{alpha}A^{alpha}) eta^{munu} = (partial_{rho}A^{rho})eta^{munu} $$



        where I've freely labeled and relabeled dummy indices.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 18 at 5:13









        DwaggDwagg

        619113




        619113






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467109%2fapplying-the-euler-lagrange-equations-to-maxwells-theory%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents