Show that following series converges uniformly on $[0,1]$ if and only if $α > 1$
$begingroup$
$$sum_{n=1}^inftyfrac{{x^α}}{1+n^2x^2}$$$α>0$
I tried solving it using Weierstrass M test but i didn't got $M_n$ as function of $n$.
real-analysis power-series uniform-convergence
$endgroup$
add a comment |
$begingroup$
$$sum_{n=1}^inftyfrac{{x^α}}{1+n^2x^2}$$$α>0$
I tried solving it using Weierstrass M test but i didn't got $M_n$ as function of $n$.
real-analysis power-series uniform-convergence
$endgroup$
$begingroup$
Comparing the series with an integral, one sees that, when $Ntoinfty$, $$sum_{n=N}^inftyfrac{x^a}{1+n^2x^2}sim x^aint_N^inftyfrac{dt}{t^2x^2}=frac1Nx^{a-2}$$ hence the convergence should be uniform on $[0,1]$ for $$ageqslant2$$ Are you sure about the condition $$a>1 ?$$
$endgroup$
– Did
Dec 2 '18 at 11:28
$begingroup$
@Did It appears that's O.K. $$sumlimits_{n=1}^infty frac{x^alpha}{1+n^2x^2}le sumlimits_{n=1}^inftyfrac12 (2-alpha)^{1-alpha/2}alpha^{alpha/2}frac1{n^alpha}$$ for $alphain(1,2]$.
$endgroup$
– user539887
Dec 2 '18 at 11:54
$begingroup$
@user539887 Hmmm... nifty. And even, for every $ain(1,2]$, $$frac{x^a}{1+n^2x^2}leqslantfrac1{n^a}$$
$endgroup$
– Did
Dec 2 '18 at 11:58
add a comment |
$begingroup$
$$sum_{n=1}^inftyfrac{{x^α}}{1+n^2x^2}$$$α>0$
I tried solving it using Weierstrass M test but i didn't got $M_n$ as function of $n$.
real-analysis power-series uniform-convergence
$endgroup$
$$sum_{n=1}^inftyfrac{{x^α}}{1+n^2x^2}$$$α>0$
I tried solving it using Weierstrass M test but i didn't got $M_n$ as function of $n$.
real-analysis power-series uniform-convergence
real-analysis power-series uniform-convergence
asked Dec 2 '18 at 11:05
BhowmickBhowmick
1438
1438
$begingroup$
Comparing the series with an integral, one sees that, when $Ntoinfty$, $$sum_{n=N}^inftyfrac{x^a}{1+n^2x^2}sim x^aint_N^inftyfrac{dt}{t^2x^2}=frac1Nx^{a-2}$$ hence the convergence should be uniform on $[0,1]$ for $$ageqslant2$$ Are you sure about the condition $$a>1 ?$$
$endgroup$
– Did
Dec 2 '18 at 11:28
$begingroup$
@Did It appears that's O.K. $$sumlimits_{n=1}^infty frac{x^alpha}{1+n^2x^2}le sumlimits_{n=1}^inftyfrac12 (2-alpha)^{1-alpha/2}alpha^{alpha/2}frac1{n^alpha}$$ for $alphain(1,2]$.
$endgroup$
– user539887
Dec 2 '18 at 11:54
$begingroup$
@user539887 Hmmm... nifty. And even, for every $ain(1,2]$, $$frac{x^a}{1+n^2x^2}leqslantfrac1{n^a}$$
$endgroup$
– Did
Dec 2 '18 at 11:58
add a comment |
$begingroup$
Comparing the series with an integral, one sees that, when $Ntoinfty$, $$sum_{n=N}^inftyfrac{x^a}{1+n^2x^2}sim x^aint_N^inftyfrac{dt}{t^2x^2}=frac1Nx^{a-2}$$ hence the convergence should be uniform on $[0,1]$ for $$ageqslant2$$ Are you sure about the condition $$a>1 ?$$
$endgroup$
– Did
Dec 2 '18 at 11:28
$begingroup$
@Did It appears that's O.K. $$sumlimits_{n=1}^infty frac{x^alpha}{1+n^2x^2}le sumlimits_{n=1}^inftyfrac12 (2-alpha)^{1-alpha/2}alpha^{alpha/2}frac1{n^alpha}$$ for $alphain(1,2]$.
$endgroup$
– user539887
Dec 2 '18 at 11:54
$begingroup$
@user539887 Hmmm... nifty. And even, for every $ain(1,2]$, $$frac{x^a}{1+n^2x^2}leqslantfrac1{n^a}$$
$endgroup$
– Did
Dec 2 '18 at 11:58
$begingroup$
Comparing the series with an integral, one sees that, when $Ntoinfty$, $$sum_{n=N}^inftyfrac{x^a}{1+n^2x^2}sim x^aint_N^inftyfrac{dt}{t^2x^2}=frac1Nx^{a-2}$$ hence the convergence should be uniform on $[0,1]$ for $$ageqslant2$$ Are you sure about the condition $$a>1 ?$$
$endgroup$
– Did
Dec 2 '18 at 11:28
$begingroup$
Comparing the series with an integral, one sees that, when $Ntoinfty$, $$sum_{n=N}^inftyfrac{x^a}{1+n^2x^2}sim x^aint_N^inftyfrac{dt}{t^2x^2}=frac1Nx^{a-2}$$ hence the convergence should be uniform on $[0,1]$ for $$ageqslant2$$ Are you sure about the condition $$a>1 ?$$
$endgroup$
– Did
Dec 2 '18 at 11:28
$begingroup$
@Did It appears that's O.K. $$sumlimits_{n=1}^infty frac{x^alpha}{1+n^2x^2}le sumlimits_{n=1}^inftyfrac12 (2-alpha)^{1-alpha/2}alpha^{alpha/2}frac1{n^alpha}$$ for $alphain(1,2]$.
$endgroup$
– user539887
Dec 2 '18 at 11:54
$begingroup$
@Did It appears that's O.K. $$sumlimits_{n=1}^infty frac{x^alpha}{1+n^2x^2}le sumlimits_{n=1}^inftyfrac12 (2-alpha)^{1-alpha/2}alpha^{alpha/2}frac1{n^alpha}$$ for $alphain(1,2]$.
$endgroup$
– user539887
Dec 2 '18 at 11:54
$begingroup$
@user539887 Hmmm... nifty. And even, for every $ain(1,2]$, $$frac{x^a}{1+n^2x^2}leqslantfrac1{n^a}$$
$endgroup$
– Did
Dec 2 '18 at 11:58
$begingroup$
@user539887 Hmmm... nifty. And even, for every $ain(1,2]$, $$frac{x^a}{1+n^2x^2}leqslantfrac1{n^a}$$
$endgroup$
– Did
Dec 2 '18 at 11:58
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022498%2fshow-that-following-series-converges-uniformly-on-0-1-if-and-only-if-%25ce%25b1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022498%2fshow-that-following-series-converges-uniformly-on-0-1-if-and-only-if-%25ce%25b1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Comparing the series with an integral, one sees that, when $Ntoinfty$, $$sum_{n=N}^inftyfrac{x^a}{1+n^2x^2}sim x^aint_N^inftyfrac{dt}{t^2x^2}=frac1Nx^{a-2}$$ hence the convergence should be uniform on $[0,1]$ for $$ageqslant2$$ Are you sure about the condition $$a>1 ?$$
$endgroup$
– Did
Dec 2 '18 at 11:28
$begingroup$
@Did It appears that's O.K. $$sumlimits_{n=1}^infty frac{x^alpha}{1+n^2x^2}le sumlimits_{n=1}^inftyfrac12 (2-alpha)^{1-alpha/2}alpha^{alpha/2}frac1{n^alpha}$$ for $alphain(1,2]$.
$endgroup$
– user539887
Dec 2 '18 at 11:54
$begingroup$
@user539887 Hmmm... nifty. And even, for every $ain(1,2]$, $$frac{x^a}{1+n^2x^2}leqslantfrac1{n^a}$$
$endgroup$
– Did
Dec 2 '18 at 11:58