A slightly problematic integral $int{1/(x^4+1)^{1/4}} , mathrm{d}x$
$begingroup$
Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$
I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$
I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?
calculus integration indefinite-integrals
$endgroup$
$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20
$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23
add a comment |
$begingroup$
Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$
I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?
calculus integration indefinite-integrals
$endgroup$
Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$
I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Dec 2 '18 at 10:03
Nikhil Itty
asked Jun 30 '16 at 9:15
Nikhil IttyNikhil Itty
1758
1758
$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20
$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23
add a comment |
$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20
$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23
$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20
$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20
$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23
$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.
$endgroup$
2
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
add a comment |
$begingroup$
Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$
Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$
So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$
Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$
So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$
So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$
$endgroup$
3
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1844557%2fa-slightly-problematic-integral-int1-x411-4-mathrmdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.
$endgroup$
2
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
add a comment |
$begingroup$
Hint:
This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.
$endgroup$
2
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
add a comment |
$begingroup$
Hint:
This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.
$endgroup$
Hint:
This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.
edited Jun 30 '16 at 9:40
answered Jun 30 '16 at 9:28
NikunjNikunj
4,50211233
4,50211233
2
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
add a comment |
2
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
2
2
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32
add a comment |
$begingroup$
Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$
Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$
So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$
Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$
So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$
So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$
$endgroup$
3
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
add a comment |
$begingroup$
Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$
Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$
So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$
Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$
So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$
So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$
$endgroup$
3
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
add a comment |
$begingroup$
Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$
Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$
So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$
Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$
So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$
So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$
$endgroup$
Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$
Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$
So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$
Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$
So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$
So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$
edited Jun 30 '16 at 12:16
answered Jun 30 '16 at 10:28
juantheronjuantheron
34.3k1147142
34.3k1147142
3
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
add a comment |
3
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
3
3
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1844557%2fa-slightly-problematic-integral-int1-x411-4-mathrmdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20
$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23