A slightly problematic integral $int{1/(x^4+1)^{1/4}} , mathrm{d}x$












9












$begingroup$


Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$



I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:20










  • $begingroup$
    @b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:23


















9












$begingroup$


Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$



I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:20










  • $begingroup$
    @b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:23
















9












9








9


1



$begingroup$


Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$



I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?










share|cite|improve this question











$endgroup$




Question. To find the integral of- $$int {frac{1}{(x^4+1)^frac{1}{4}} , mathrm{d}x}$$



I have tried substituting $x^4+1$ as $t$, and as $t^4$, but it gives me an even more complex integral. Any help?







calculus integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 2 '18 at 10:03







Nikhil Itty

















asked Jun 30 '16 at 9:15









Nikhil IttyNikhil Itty

1758




1758












  • $begingroup$
    Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:20










  • $begingroup$
    @b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:23




















  • $begingroup$
    Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:20










  • $begingroup$
    @b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:23


















$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20




$begingroup$
Wolfram gives me a difficult result, but it is in the form of $arctan$ and $ln$
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:20












$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23






$begingroup$
@b00nheT, I am not familiar, regrettably, with hyperbolic functions. It isn't in our syllabus, either. We are to find it without those functions.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:23












2 Answers
2






active

oldest

votes


















17












$begingroup$

Hint:



This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Just when I figured it out. Exactly one moment before. Thanks, mate.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:32



















9












$begingroup$

Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$



Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$



So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$



Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$



So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$



So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$






share|cite|improve this answer











$endgroup$









  • 3




    $begingroup$
    Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
    $endgroup$
    – Nikunj
    Jun 30 '16 at 11:47










  • $begingroup$
    Thanks Nikung, But your,s solution is much better then mine.
    $endgroup$
    – juantheron
    Jun 30 '16 at 12:16











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1844557%2fa-slightly-problematic-integral-int1-x411-4-mathrmdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









17












$begingroup$

Hint:



This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Just when I figured it out. Exactly one moment before. Thanks, mate.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:32
















17












$begingroup$

Hint:



This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    Just when I figured it out. Exactly one moment before. Thanks, mate.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:32














17












17








17





$begingroup$

Hint:



This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.






share|cite|improve this answer











$endgroup$



Hint:



This can be written as :
$$int frac{x^4dx}{x^5left(1+frac{1}{x^4}right)^{1/4}}$$
Now substitute $1+frac{1}{x^4}=t^4$
$$implies t^3dt=-frac{1}{x^5}dx$$
and
$$x^4=frac{1}{t^4-1}$$ to get
$$int frac{t^2dt}{1-t^4}$$
Now use partial fractions.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jun 30 '16 at 9:40

























answered Jun 30 '16 at 9:28









NikunjNikunj

4,50211233




4,50211233








  • 2




    $begingroup$
    Just when I figured it out. Exactly one moment before. Thanks, mate.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:32














  • 2




    $begingroup$
    Just when I figured it out. Exactly one moment before. Thanks, mate.
    $endgroup$
    – Nikhil Itty
    Jun 30 '16 at 9:32








2




2




$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32




$begingroup$
Just when I figured it out. Exactly one moment before. Thanks, mate.
$endgroup$
– Nikhil Itty
Jun 30 '16 at 9:32











9












$begingroup$

Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$



Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$



So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$



Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$



So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$



So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$






share|cite|improve this answer











$endgroup$









  • 3




    $begingroup$
    Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
    $endgroup$
    – Nikunj
    Jun 30 '16 at 11:47










  • $begingroup$
    Thanks Nikung, But your,s solution is much better then mine.
    $endgroup$
    – juantheron
    Jun 30 '16 at 12:16
















9












$begingroup$

Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$



Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$



So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$



Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$



So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$



So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$






share|cite|improve this answer











$endgroup$









  • 3




    $begingroup$
    Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
    $endgroup$
    – Nikunj
    Jun 30 '16 at 11:47










  • $begingroup$
    Thanks Nikung, But your,s solution is much better then mine.
    $endgroup$
    – juantheron
    Jun 30 '16 at 12:16














9












9








9





$begingroup$

Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$



Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$



So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$



Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$



So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$



So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$






share|cite|improve this answer











$endgroup$



Let $$I = intfrac{1}{(x^4+1)^{frac{1}{4}}}dx$$



Put $x^2=tan theta,$ Then $2xdx = sec^2 theta dtheta$



So $$I = intfrac{sec^2 theta}{sqrt{sec theta}}cdot frac{1}{2sqrt{tan theta}}dtheta = frac{1}{2}intfrac{1}{cos theta sqrt{sin theta}}dtheta = frac{1}{2}intfrac{cos theta}{(1-sin^2 theta)sqrt{sin theta}}dtheta$$



Now Put $sin theta = t^2;,$ Then $cos theta dtheta = 2tdt$



So $$I = intfrac{1}{1-t^4}dt = -intfrac{1}{(t^2-1)(t^2+1)}dt = -frac{1}{2}intleft[frac{1}{1-t^2}+frac{1}{1+t^2}right]dt$$



So $$I = frac{1}{2}ln left|frac{t-1}{t+1}right|-frac{1}{2}tan^{-1}(t)+mathcal{C}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jun 30 '16 at 12:16

























answered Jun 30 '16 at 10:28









juantheronjuantheron

34.3k1147142




34.3k1147142








  • 3




    $begingroup$
    Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
    $endgroup$
    – Nikunj
    Jun 30 '16 at 11:47










  • $begingroup$
    Thanks Nikung, But your,s solution is much better then mine.
    $endgroup$
    – juantheron
    Jun 30 '16 at 12:16














  • 3




    $begingroup$
    Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
    $endgroup$
    – Nikunj
    Jun 30 '16 at 11:47










  • $begingroup$
    Thanks Nikung, But your,s solution is much better then mine.
    $endgroup$
    – juantheron
    Jun 30 '16 at 12:16








3




3




$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47




$begingroup$
Nice!(+1) but the $tan^{-1}t$ is missing a coefficient of $frac{1}{2}$, otherwise our answers match.
$endgroup$
– Nikunj
Jun 30 '16 at 11:47












$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16




$begingroup$
Thanks Nikung, But your,s solution is much better then mine.
$endgroup$
– juantheron
Jun 30 '16 at 12:16


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1844557%2fa-slightly-problematic-integral-int1-x411-4-mathrmdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?