Changing 4 columns in only 1












0















I am trying to convert 4 colunms from my DataFrame to a unique column.



I have the following DataFrame:



    doggo   floofer pupper  puppo
0 None None None None
1 None None None None
2 None None None None
3 None None None None
4 None None None None
5 None None None None
6 None None None None
7 None None None None
8 None None None None
9 doggo None None None
10 None None None None
11 None None None None
12 None None None puppo
13 None None None None
14 None None None puppo


I want a unique column filled with the values 'None', 'doggo', 'floofer', 'pupper', 'puppo'.



I have tried using the Melt function with no success.



my actual code:



melt = pd.melt(melt, id_vars=['doggo', 'floofer', 'pupper', 'puppo'], var_name='classification')


Any help?



EDIT



Below the complete solution(comments are in portuguese):



#criar uma cópia do DataFrame para não comprometer o DataFrame original
df = twitter_archive.copy()

#Apagar os valores None
df = df.replace('None', '')

#criar e preencher a coluna classification com as informações das colunas doggo, floofer, pupper e puppo
df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)

#Dropar todas as colunas e deixar somente a classification
df = df.drop(columns=['in_reply_to_status_id', 'in_reply_to_user_id', 'timestamp', 'source', 'text', 'retweeted_status_id', 'retweeted_status_user_id', 'retweeted_status_timestamp', 'expanded_urls', 'rating_numerator', 'rating_denominator', 'name', 'doggo','floofer', 'pupper', 'puppo'])

#Acrescentar a coluna classification no DataFrame twitter_archive e remover as colunas doggo, floofer, pupper e puppo
twitter_archive = pd.merge(twitter_archive, df, on= 'tweet_id')
twitter_archive = twitter_archive.drop(columns=['doggo', 'floofer', 'pupper', 'puppo'])









share|improve this question





























    0















    I am trying to convert 4 colunms from my DataFrame to a unique column.



    I have the following DataFrame:



        doggo   floofer pupper  puppo
    0 None None None None
    1 None None None None
    2 None None None None
    3 None None None None
    4 None None None None
    5 None None None None
    6 None None None None
    7 None None None None
    8 None None None None
    9 doggo None None None
    10 None None None None
    11 None None None None
    12 None None None puppo
    13 None None None None
    14 None None None puppo


    I want a unique column filled with the values 'None', 'doggo', 'floofer', 'pupper', 'puppo'.



    I have tried using the Melt function with no success.



    my actual code:



    melt = pd.melt(melt, id_vars=['doggo', 'floofer', 'pupper', 'puppo'], var_name='classification')


    Any help?



    EDIT



    Below the complete solution(comments are in portuguese):



    #criar uma cópia do DataFrame para não comprometer o DataFrame original
    df = twitter_archive.copy()

    #Apagar os valores None
    df = df.replace('None', '')

    #criar e preencher a coluna classification com as informações das colunas doggo, floofer, pupper e puppo
    df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)

    #Dropar todas as colunas e deixar somente a classification
    df = df.drop(columns=['in_reply_to_status_id', 'in_reply_to_user_id', 'timestamp', 'source', 'text', 'retweeted_status_id', 'retweeted_status_user_id', 'retweeted_status_timestamp', 'expanded_urls', 'rating_numerator', 'rating_denominator', 'name', 'doggo','floofer', 'pupper', 'puppo'])

    #Acrescentar a coluna classification no DataFrame twitter_archive e remover as colunas doggo, floofer, pupper e puppo
    twitter_archive = pd.merge(twitter_archive, df, on= 'tweet_id')
    twitter_archive = twitter_archive.drop(columns=['doggo', 'floofer', 'pupper', 'puppo'])









    share|improve this question



























      0












      0








      0








      I am trying to convert 4 colunms from my DataFrame to a unique column.



      I have the following DataFrame:



          doggo   floofer pupper  puppo
      0 None None None None
      1 None None None None
      2 None None None None
      3 None None None None
      4 None None None None
      5 None None None None
      6 None None None None
      7 None None None None
      8 None None None None
      9 doggo None None None
      10 None None None None
      11 None None None None
      12 None None None puppo
      13 None None None None
      14 None None None puppo


      I want a unique column filled with the values 'None', 'doggo', 'floofer', 'pupper', 'puppo'.



      I have tried using the Melt function with no success.



      my actual code:



      melt = pd.melt(melt, id_vars=['doggo', 'floofer', 'pupper', 'puppo'], var_name='classification')


      Any help?



      EDIT



      Below the complete solution(comments are in portuguese):



      #criar uma cópia do DataFrame para não comprometer o DataFrame original
      df = twitter_archive.copy()

      #Apagar os valores None
      df = df.replace('None', '')

      #criar e preencher a coluna classification com as informações das colunas doggo, floofer, pupper e puppo
      df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)

      #Dropar todas as colunas e deixar somente a classification
      df = df.drop(columns=['in_reply_to_status_id', 'in_reply_to_user_id', 'timestamp', 'source', 'text', 'retweeted_status_id', 'retweeted_status_user_id', 'retweeted_status_timestamp', 'expanded_urls', 'rating_numerator', 'rating_denominator', 'name', 'doggo','floofer', 'pupper', 'puppo'])

      #Acrescentar a coluna classification no DataFrame twitter_archive e remover as colunas doggo, floofer, pupper e puppo
      twitter_archive = pd.merge(twitter_archive, df, on= 'tweet_id')
      twitter_archive = twitter_archive.drop(columns=['doggo', 'floofer', 'pupper', 'puppo'])









      share|improve this question
















      I am trying to convert 4 colunms from my DataFrame to a unique column.



      I have the following DataFrame:



          doggo   floofer pupper  puppo
      0 None None None None
      1 None None None None
      2 None None None None
      3 None None None None
      4 None None None None
      5 None None None None
      6 None None None None
      7 None None None None
      8 None None None None
      9 doggo None None None
      10 None None None None
      11 None None None None
      12 None None None puppo
      13 None None None None
      14 None None None puppo


      I want a unique column filled with the values 'None', 'doggo', 'floofer', 'pupper', 'puppo'.



      I have tried using the Melt function with no success.



      my actual code:



      melt = pd.melt(melt, id_vars=['doggo', 'floofer', 'pupper', 'puppo'], var_name='classification')


      Any help?



      EDIT



      Below the complete solution(comments are in portuguese):



      #criar uma cópia do DataFrame para não comprometer o DataFrame original
      df = twitter_archive.copy()

      #Apagar os valores None
      df = df.replace('None', '')

      #criar e preencher a coluna classification com as informações das colunas doggo, floofer, pupper e puppo
      df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)

      #Dropar todas as colunas e deixar somente a classification
      df = df.drop(columns=['in_reply_to_status_id', 'in_reply_to_user_id', 'timestamp', 'source', 'text', 'retweeted_status_id', 'retweeted_status_user_id', 'retweeted_status_timestamp', 'expanded_urls', 'rating_numerator', 'rating_denominator', 'name', 'doggo','floofer', 'pupper', 'puppo'])

      #Acrescentar a coluna classification no DataFrame twitter_archive e remover as colunas doggo, floofer, pupper e puppo
      twitter_archive = pd.merge(twitter_archive, df, on= 'tweet_id')
      twitter_archive = twitter_archive.drop(columns=['doggo', 'floofer', 'pupper', 'puppo'])






      python dataframe multiple-columns melt






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 20 '18 at 14:27







      Leandro Baruch

















      asked Nov 20 '18 at 13:02









      Leandro BaruchLeandro Baruch

      427




      427
























          2 Answers
          2






          active

          oldest

          votes


















          2














          A quick and dirty way to do it :



          df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)





          share|improve this answer
























          • It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

            – Leandro Baruch
            Nov 20 '18 at 13:59






          • 1





            I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

            – Leandro Baruch
            Nov 20 '18 at 14:25











          • Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

            – Siliam
            Nov 26 '18 at 10:29





















          0














          just make take the maximum. Every string is larger than None. Assuming your entries(per line) are unique. The following should work



          d = {"col1": [None, "x", None], "col2": ["y",None, None]}
          x = pd.DataFrame(d)
          x["col3"] = x[["col1", "col2"]].max(axis=1)


          Output:



             col1  col2  col3
          0 None y y
          1 x None x
          2 None None None





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53393597%2fchanging-4-columns-in-only-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            A quick and dirty way to do it :



            df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)





            share|improve this answer
























            • It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

              – Leandro Baruch
              Nov 20 '18 at 13:59






            • 1





              I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

              – Leandro Baruch
              Nov 20 '18 at 14:25











            • Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

              – Siliam
              Nov 26 '18 at 10:29


















            2














            A quick and dirty way to do it :



            df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)





            share|improve this answer
























            • It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

              – Leandro Baruch
              Nov 20 '18 at 13:59






            • 1





              I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

              – Leandro Baruch
              Nov 20 '18 at 14:25











            • Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

              – Siliam
              Nov 26 '18 at 10:29
















            2












            2








            2







            A quick and dirty way to do it :



            df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)





            share|improve this answer













            A quick and dirty way to do it :



            df['classification'] = (df['doggo'].fillna('') + df['floofer'].fillna('') + df['pupper'].fillna('') + df['puppo'].fillna('')).replace('', np.nan)






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Nov 20 '18 at 13:35









            SiliamSiliam

            563




            563













            • It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

              – Leandro Baruch
              Nov 20 '18 at 13:59






            • 1





              I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

              – Leandro Baruch
              Nov 20 '18 at 14:25











            • Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

              – Siliam
              Nov 26 '18 at 10:29





















            • It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

              – Leandro Baruch
              Nov 20 '18 at 13:59






            • 1





              I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

              – Leandro Baruch
              Nov 20 '18 at 14:25











            • Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

              – Siliam
              Nov 26 '18 at 10:29



















            It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

            – Leandro Baruch
            Nov 20 '18 at 13:59





            It helped, but still didnt get there. each line has 4 values now... like NoneNoneNoneNone or doggoNoneNoneNone

            – Leandro Baruch
            Nov 20 '18 at 13:59




            1




            1





            I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

            – Leandro Baruch
            Nov 20 '18 at 14:25





            I will accept your answer because it helped me to achieve my objective... I will edit my post with the entire solution. Thank you!

            – Leandro Baruch
            Nov 20 '18 at 14:25













            Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

            – Siliam
            Nov 26 '18 at 10:29







            Thank you! My code would work only if you the 'None' you had in your original dataframe were np.nan and not strings with "None" value. You can drop .fillna('') from each column if you don't mind doing it for the entire dataframe (i.e. df = df.replace('None', '') ).

            – Siliam
            Nov 26 '18 at 10:29















            0














            just make take the maximum. Every string is larger than None. Assuming your entries(per line) are unique. The following should work



            d = {"col1": [None, "x", None], "col2": ["y",None, None]}
            x = pd.DataFrame(d)
            x["col3"] = x[["col1", "col2"]].max(axis=1)


            Output:



               col1  col2  col3
            0 None y y
            1 x None x
            2 None None None





            share|improve this answer




























              0














              just make take the maximum. Every string is larger than None. Assuming your entries(per line) are unique. The following should work



              d = {"col1": [None, "x", None], "col2": ["y",None, None]}
              x = pd.DataFrame(d)
              x["col3"] = x[["col1", "col2"]].max(axis=1)


              Output:



                 col1  col2  col3
              0 None y y
              1 x None x
              2 None None None





              share|improve this answer


























                0












                0








                0







                just make take the maximum. Every string is larger than None. Assuming your entries(per line) are unique. The following should work



                d = {"col1": [None, "x", None], "col2": ["y",None, None]}
                x = pd.DataFrame(d)
                x["col3"] = x[["col1", "col2"]].max(axis=1)


                Output:



                   col1  col2  col3
                0 None y y
                1 x None x
                2 None None None





                share|improve this answer













                just make take the maximum. Every string is larger than None. Assuming your entries(per line) are unique. The following should work



                d = {"col1": [None, "x", None], "col2": ["y",None, None]}
                x = pd.DataFrame(d)
                x["col3"] = x[["col1", "col2"]].max(axis=1)


                Output:



                   col1  col2  col3
                0 None y y
                1 x None x
                2 None None None






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 20 '18 at 13:25









                GlostasGlostas

                502416




                502416






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53393597%2fchanging-4-columns-in-only-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?