Rational solution to a system of equations












2












$begingroup$


Some context.




  • By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.


  • For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:



$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$



The question.




Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where



$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$



Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?




I believe the answer to be negative.





What I tried.



For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.



Lemma. The answer to the question is negative, if, and only if,



$$forall Y in A,quad dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$



I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.



Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.



We have



$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$



If we assume (to try to get somewhere) that



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$



then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that



$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$



which can be rewrite



$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$



So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.



Let's compute $det(M)$ then:



$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$



with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$



and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have



$$A=B=C=D=0.$$



The computations give



$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



The question can now be reformulated as follow:




Does the system $(mathscr S)$ has rational solutions?




If we try to solve the system, we can end up with this expression:



$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$



The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:



enter image description here





Final remarks.



This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    @AlexRavsky The lemma was indeed maybe confusing, so I made it a little more clear I hope.
    $endgroup$
    – E. Joseph
    Jan 13 at 9:25
















2












$begingroup$


Some context.




  • By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.


  • For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:



$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$



The question.




Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where



$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$



Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?




I believe the answer to be negative.





What I tried.



For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.



Lemma. The answer to the question is negative, if, and only if,



$$forall Y in A,quad dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$



I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.



Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.



We have



$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$



If we assume (to try to get somewhere) that



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$



then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that



$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$



which can be rewrite



$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$



So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.



Let's compute $det(M)$ then:



$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$



with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$



and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have



$$A=B=C=D=0.$$



The computations give



$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



The question can now be reformulated as follow:




Does the system $(mathscr S)$ has rational solutions?




If we try to solve the system, we can end up with this expression:



$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$



The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:



enter image description here





Final remarks.



This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    @AlexRavsky The lemma was indeed maybe confusing, so I made it a little more clear I hope.
    $endgroup$
    – E. Joseph
    Jan 13 at 9:25














2












2








2





$begingroup$


Some context.




  • By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.


  • For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:



$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$



The question.




Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where



$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$



Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?




I believe the answer to be negative.





What I tried.



For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.



Lemma. The answer to the question is negative, if, and only if,



$$forall Y in A,quad dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$



I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.



Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.



We have



$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$



If we assume (to try to get somewhere) that



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$



then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that



$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$



which can be rewrite



$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$



So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.



Let's compute $det(M)$ then:



$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$



with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$



and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have



$$A=B=C=D=0.$$



The computations give



$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



The question can now be reformulated as follow:




Does the system $(mathscr S)$ has rational solutions?




If we try to solve the system, we can end up with this expression:



$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$



The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:



enter image description here





Final remarks.



This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.










share|cite|improve this question











$endgroup$




Some context.




  • By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.


  • For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:



$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$



The question.




Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where



$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$



Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?




I believe the answer to be negative.





What I tried.



For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.



Lemma. The answer to the question is negative, if, and only if,



$$forall Y in A,quad dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$



I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.



Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.



We have



$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$



If we assume (to try to get somewhere) that



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$



then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that



$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$



which can be rewrite



$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$



So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.



Let's compute $det(M)$ then:



$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$



with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since



$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$



and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have



$$A=B=C=D=0.$$



The computations give



$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



The question can now be reformulated as follow:




Does the system $(mathscr S)$ has rational solutions?




If we try to solve the system, we can end up with this expression:



$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$



The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:



enter image description here





Final remarks.



This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.







linear-algebra number-theory vector-spaces diophantine-equations rational-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 9:25







E. Joseph

















asked Dec 1 '18 at 14:31









E. JosephE. Joseph

11.7k82856




11.7k82856








  • 1




    $begingroup$
    @AlexRavsky The lemma was indeed maybe confusing, so I made it a little more clear I hope.
    $endgroup$
    – E. Joseph
    Jan 13 at 9:25














  • 1




    $begingroup$
    @AlexRavsky The lemma was indeed maybe confusing, so I made it a little more clear I hope.
    $endgroup$
    – E. Joseph
    Jan 13 at 9:25








1




1




$begingroup$
@AlexRavsky The lemma was indeed maybe confusing, so I made it a little more clear I hope.
$endgroup$
– E. Joseph
Jan 13 at 9:25




$begingroup$
@AlexRavsky The lemma was indeed maybe confusing, so I made it a little more clear I hope.
$endgroup$
– E. Joseph
Jan 13 at 9:25










2 Answers
2






active

oldest

votes


















2












$begingroup$

If your question boils down to the system,



$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



then, YES, this system has infinitely many rational solutions. If you let,



$$x_1 = x_4 x_5-x_3 x_6$$
$$x_2 = (5/6)(x_3-3x_4)$$
$$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$



This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,



$$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$



You simply solve the linear equation,



$$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$



for $x_6$, thus,



$$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$



with free parameter $x_3$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Above simultaneous equations shown below has numerical solutions:



    $(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$



    $x_1$=$(-81255/10666)$



    $x_2$=(32315/504)



    $x_3$=$(2)$



    $x_4$=$(-6295/252)$



    $x_5$=$(-20790/5333)$



    $x_6$=$(105/2)$



    The solution provided by Tito Piezas in this context



    actually requires solving a cubic equation instead of



    a quadratic equation as mentioned by him.



    (Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks a lot, I really appreciate the explicit solution.
      $endgroup$
      – E. Joseph
      Dec 2 '18 at 19:22










    • $begingroup$
      You are welcome
      $endgroup$
      – Sam
      Dec 2 '18 at 20:40










    • $begingroup$
      In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
      $endgroup$
      – Tito Piezas III
      Dec 30 '18 at 2:54











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021415%2frational-solution-to-a-system-of-equations%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If your question boils down to the system,



    $$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



    then, YES, this system has infinitely many rational solutions. If you let,



    $$x_1 = x_4 x_5-x_3 x_6$$
    $$x_2 = (5/6)(x_3-3x_4)$$
    $$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$



    This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,



    $$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$



    You simply solve the linear equation,



    $$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$



    for $x_6$, thus,



    $$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$



    with free parameter $x_3$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      If your question boils down to the system,



      $$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



      then, YES, this system has infinitely many rational solutions. If you let,



      $$x_1 = x_4 x_5-x_3 x_6$$
      $$x_2 = (5/6)(x_3-3x_4)$$
      $$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$



      This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,



      $$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$



      You simply solve the linear equation,



      $$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$



      for $x_6$, thus,



      $$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$



      with free parameter $x_3$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        If your question boils down to the system,



        $$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



        then, YES, this system has infinitely many rational solutions. If you let,



        $$x_1 = x_4 x_5-x_3 x_6$$
        $$x_2 = (5/6)(x_3-3x_4)$$
        $$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$



        This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,



        $$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$



        You simply solve the linear equation,



        $$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$



        for $x_6$, thus,



        $$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$



        with free parameter $x_3$.






        share|cite|improve this answer









        $endgroup$



        If your question boils down to the system,



        $$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$



        then, YES, this system has infinitely many rational solutions. If you let,



        $$x_1 = x_4 x_5-x_3 x_6$$
        $$x_2 = (5/6)(x_3-3x_4)$$
        $$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$



        This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,



        $$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$



        You simply solve the linear equation,



        $$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$



        for $x_6$, thus,



        $$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$



        with free parameter $x_3$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 1 '18 at 15:28









        Tito Piezas IIITito Piezas III

        27.2k366174




        27.2k366174























            2












            $begingroup$

            Above simultaneous equations shown below has numerical solutions:



            $(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$



            $x_1$=$(-81255/10666)$



            $x_2$=(32315/504)



            $x_3$=$(2)$



            $x_4$=$(-6295/252)$



            $x_5$=$(-20790/5333)$



            $x_6$=$(105/2)$



            The solution provided by Tito Piezas in this context



            actually requires solving a cubic equation instead of



            a quadratic equation as mentioned by him.



            (Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks a lot, I really appreciate the explicit solution.
              $endgroup$
              – E. Joseph
              Dec 2 '18 at 19:22










            • $begingroup$
              You are welcome
              $endgroup$
              – Sam
              Dec 2 '18 at 20:40










            • $begingroup$
              In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
              $endgroup$
              – Tito Piezas III
              Dec 30 '18 at 2:54
















            2












            $begingroup$

            Above simultaneous equations shown below has numerical solutions:



            $(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$



            $x_1$=$(-81255/10666)$



            $x_2$=(32315/504)



            $x_3$=$(2)$



            $x_4$=$(-6295/252)$



            $x_5$=$(-20790/5333)$



            $x_6$=$(105/2)$



            The solution provided by Tito Piezas in this context



            actually requires solving a cubic equation instead of



            a quadratic equation as mentioned by him.



            (Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thanks a lot, I really appreciate the explicit solution.
              $endgroup$
              – E. Joseph
              Dec 2 '18 at 19:22










            • $begingroup$
              You are welcome
              $endgroup$
              – Sam
              Dec 2 '18 at 20:40










            • $begingroup$
              In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
              $endgroup$
              – Tito Piezas III
              Dec 30 '18 at 2:54














            2












            2








            2





            $begingroup$

            Above simultaneous equations shown below has numerical solutions:



            $(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$



            $x_1$=$(-81255/10666)$



            $x_2$=(32315/504)



            $x_3$=$(2)$



            $x_4$=$(-6295/252)$



            $x_5$=$(-20790/5333)$



            $x_6$=$(105/2)$



            The solution provided by Tito Piezas in this context



            actually requires solving a cubic equation instead of



            a quadratic equation as mentioned by him.



            (Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.






            share|cite|improve this answer











            $endgroup$



            Above simultaneous equations shown below has numerical solutions:



            $(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$



            $x_1$=$(-81255/10666)$



            $x_2$=(32315/504)



            $x_3$=$(2)$



            $x_4$=$(-6295/252)$



            $x_5$=$(-20790/5333)$



            $x_6$=$(105/2)$



            The solution provided by Tito Piezas in this context



            actually requires solving a cubic equation instead of



            a quadratic equation as mentioned by him.



            (Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 30 '18 at 2:57









            Tito Piezas III

            27.2k366174




            27.2k366174










            answered Dec 2 '18 at 15:40









            SamSam

            291




            291












            • $begingroup$
              Thanks a lot, I really appreciate the explicit solution.
              $endgroup$
              – E. Joseph
              Dec 2 '18 at 19:22










            • $begingroup$
              You are welcome
              $endgroup$
              – Sam
              Dec 2 '18 at 20:40










            • $begingroup$
              In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
              $endgroup$
              – Tito Piezas III
              Dec 30 '18 at 2:54


















            • $begingroup$
              Thanks a lot, I really appreciate the explicit solution.
              $endgroup$
              – E. Joseph
              Dec 2 '18 at 19:22










            • $begingroup$
              You are welcome
              $endgroup$
              – Sam
              Dec 2 '18 at 20:40










            • $begingroup$
              In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
              $endgroup$
              – Tito Piezas III
              Dec 30 '18 at 2:54
















            $begingroup$
            Thanks a lot, I really appreciate the explicit solution.
            $endgroup$
            – E. Joseph
            Dec 2 '18 at 19:22




            $begingroup$
            Thanks a lot, I really appreciate the explicit solution.
            $endgroup$
            – E. Joseph
            Dec 2 '18 at 19:22












            $begingroup$
            You are welcome
            $endgroup$
            – Sam
            Dec 2 '18 at 20:40




            $begingroup$
            You are welcome
            $endgroup$
            – Sam
            Dec 2 '18 at 20:40












            $begingroup$
            In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
            $endgroup$
            – Tito Piezas III
            Dec 30 '18 at 2:54




            $begingroup$
            In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
            $endgroup$
            – Tito Piezas III
            Dec 30 '18 at 2:54


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021415%2frational-solution-to-a-system-of-equations%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?