$operatorname{Var}[sum_{i=1}^n (X_i-mu_0)^2]=operatorname{Var}[ sum_{i=1}^n(X_i-overline{X})^2]$?
$begingroup$
Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that
$$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$
is variance minimising and that
$$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$
What I want to show is that
$$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$
Since the first moments are the same it would be enough, to know, that
$$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$
Is this true? There might be an easy argument, but I do not find it.
Thanks in advance!
probability probability-theory statistics statistical-inference descriptive-statistics
$endgroup$
add a comment |
$begingroup$
Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that
$$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$
is variance minimising and that
$$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$
What I want to show is that
$$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$
Since the first moments are the same it would be enough, to know, that
$$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$
Is this true? There might be an easy argument, but I do not find it.
Thanks in advance!
probability probability-theory statistics statistical-inference descriptive-statistics
$endgroup$
add a comment |
$begingroup$
Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that
$$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$
is variance minimising and that
$$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$
What I want to show is that
$$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$
Since the first moments are the same it would be enough, to know, that
$$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$
Is this true? There might be an easy argument, but I do not find it.
Thanks in advance!
probability probability-theory statistics statistical-inference descriptive-statistics
$endgroup$
Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that
$$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$
is variance minimising and that
$$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$
What I want to show is that
$$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$
Since the first moments are the same it would be enough, to know, that
$$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$
Is this true? There might be an easy argument, but I do not find it.
Thanks in advance!
probability probability-theory statistics statistical-inference descriptive-statistics
probability probability-theory statistics statistical-inference descriptive-statistics
edited Dec 1 '18 at 14:39
J.G.
26.6k22642
26.6k22642
asked Dec 1 '18 at 13:59
user408858user408858
482213
482213
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
$$ DeclareMathOperator{Var}{Var}
frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
$$
and
$$
Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
$$
$endgroup$
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021375%2foperatornamevar-sum-i-1n-x-i-mu-02-operatornamevar-sum-i-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
$$ DeclareMathOperator{Var}{Var}
frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
$$
and
$$
Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
$$
$endgroup$
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
add a comment |
$begingroup$
Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
$$ DeclareMathOperator{Var}{Var}
frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
$$
and
$$
Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
$$
$endgroup$
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
add a comment |
$begingroup$
Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
$$ DeclareMathOperator{Var}{Var}
frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
$$
and
$$
Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
$$
$endgroup$
Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
$$ DeclareMathOperator{Var}{Var}
frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
$$
and
$$
Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
$$
edited Dec 1 '18 at 14:30
Bernard
121k740116
121k740116
answered Dec 1 '18 at 14:08
V. VancakV. Vancak
11.1k2926
11.1k2926
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
add a comment |
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
$endgroup$
– user408858
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
@user408858 Right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:10
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
$endgroup$
– user408858
Dec 1 '18 at 14:13
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
$begingroup$
Yup, that is right
$endgroup$
– V. Vancak
Dec 1 '18 at 14:18
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021375%2foperatornamevar-sum-i-1n-x-i-mu-02-operatornamevar-sum-i-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown