Let $n,kinomega$. Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$
$begingroup$
Let $n,kinomega$. Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Lemma: $kinomegaimplies k+omega=omega$.
Proof: By definition, $k+omega=sup_{ninomega}(k+n)$ and $omega=sup_{ninomega}(n)$. It is clear that ${k+n mid ninomega} subseteq {n mid ninomega}$ and that $forall ninomega, exists n'inomega:nle k+n'$. The result is then followed.
We proceed to prove our main theorem by induction on $n$.
The statement is trivially true for $n=1$.
Assume that $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{n+1text{ times}}$
$=underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}+(omega+k)=(omegacdot n+k)+(omega+k)$
$=omegacdot n+(k+(omega+k))=omegacdot n+((k+omega)+k)overset{mathrm{Lemma}}{=}omegacdot n+(omega+k)=(omegacdot n+omega)+k=omegacdot (n+1)+k$.
This completes the proof.
elementary-set-theory ordinals
$endgroup$
add a comment |
$begingroup$
Let $n,kinomega$. Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Lemma: $kinomegaimplies k+omega=omega$.
Proof: By definition, $k+omega=sup_{ninomega}(k+n)$ and $omega=sup_{ninomega}(n)$. It is clear that ${k+n mid ninomega} subseteq {n mid ninomega}$ and that $forall ninomega, exists n'inomega:nle k+n'$. The result is then followed.
We proceed to prove our main theorem by induction on $n$.
The statement is trivially true for $n=1$.
Assume that $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{n+1text{ times}}$
$=underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}+(omega+k)=(omegacdot n+k)+(omega+k)$
$=omegacdot n+(k+(omega+k))=omegacdot n+((k+omega)+k)overset{mathrm{Lemma}}{=}omegacdot n+(omega+k)=(omegacdot n+omega)+k=omegacdot (n+1)+k$.
This completes the proof.
elementary-set-theory ordinals
$endgroup$
1
$begingroup$
Have you already verified associativity?
$endgroup$
– Andrés E. Caicedo
Dec 1 '18 at 16:30
$begingroup$
Hi @AndrésE.Caicedo, I have proved the associativity of ordinal addition.
$endgroup$
– Le Anh Dung
Dec 2 '18 at 0:56
add a comment |
$begingroup$
Let $n,kinomega$. Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Lemma: $kinomegaimplies k+omega=omega$.
Proof: By definition, $k+omega=sup_{ninomega}(k+n)$ and $omega=sup_{ninomega}(n)$. It is clear that ${k+n mid ninomega} subseteq {n mid ninomega}$ and that $forall ninomega, exists n'inomega:nle k+n'$. The result is then followed.
We proceed to prove our main theorem by induction on $n$.
The statement is trivially true for $n=1$.
Assume that $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{n+1text{ times}}$
$=underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}+(omega+k)=(omegacdot n+k)+(omega+k)$
$=omegacdot n+(k+(omega+k))=omegacdot n+((k+omega)+k)overset{mathrm{Lemma}}{=}omegacdot n+(omega+k)=(omegacdot n+omega)+k=omegacdot (n+1)+k$.
This completes the proof.
elementary-set-theory ordinals
$endgroup$
Let $n,kinomega$. Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Does my attempt look fine or contain logical flaws/gaps? Any suggestion is greatly appreciated. Thank you for your help!
My attempt:
Lemma: $kinomegaimplies k+omega=omega$.
Proof: By definition, $k+omega=sup_{ninomega}(k+n)$ and $omega=sup_{ninomega}(n)$. It is clear that ${k+n mid ninomega} subseteq {n mid ninomega}$ and that $forall ninomega, exists n'inomega:nle k+n'$. The result is then followed.
We proceed to prove our main theorem by induction on $n$.
The statement is trivially true for $n=1$.
Assume that $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}=omegacdot n+k$.
Then $underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{n+1text{ times}}$
$=underbrace{(omega+k)+(omega+k)+ldots+(omega+k)}_{ntext{ times}}+(omega+k)=(omegacdot n+k)+(omega+k)$
$=omegacdot n+(k+(omega+k))=omegacdot n+((k+omega)+k)overset{mathrm{Lemma}}{=}omegacdot n+(omega+k)=(omegacdot n+omega)+k=omegacdot (n+1)+k$.
This completes the proof.
elementary-set-theory ordinals
elementary-set-theory ordinals
asked Dec 1 '18 at 14:03
Le Anh DungLe Anh Dung
1,1091521
1,1091521
1
$begingroup$
Have you already verified associativity?
$endgroup$
– Andrés E. Caicedo
Dec 1 '18 at 16:30
$begingroup$
Hi @AndrésE.Caicedo, I have proved the associativity of ordinal addition.
$endgroup$
– Le Anh Dung
Dec 2 '18 at 0:56
add a comment |
1
$begingroup$
Have you already verified associativity?
$endgroup$
– Andrés E. Caicedo
Dec 1 '18 at 16:30
$begingroup$
Hi @AndrésE.Caicedo, I have proved the associativity of ordinal addition.
$endgroup$
– Le Anh Dung
Dec 2 '18 at 0:56
1
1
$begingroup$
Have you already verified associativity?
$endgroup$
– Andrés E. Caicedo
Dec 1 '18 at 16:30
$begingroup$
Have you already verified associativity?
$endgroup$
– Andrés E. Caicedo
Dec 1 '18 at 16:30
$begingroup$
Hi @AndrésE.Caicedo, I have proved the associativity of ordinal addition.
$endgroup$
– Le Anh Dung
Dec 2 '18 at 0:56
$begingroup$
Hi @AndrésE.Caicedo, I have proved the associativity of ordinal addition.
$endgroup$
– Le Anh Dung
Dec 2 '18 at 0:56
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021377%2flet-n-k-in-omega-then-underbrace-omegak-omegak-ldots-omegak%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021377%2flet-n-k-in-omega-then-underbrace-omegak-omegak-ldots-omegak%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Have you already verified associativity?
$endgroup$
– Andrés E. Caicedo
Dec 1 '18 at 16:30
$begingroup$
Hi @AndrésE.Caicedo, I have proved the associativity of ordinal addition.
$endgroup$
– Le Anh Dung
Dec 2 '18 at 0:56